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ABSTRACT 
 

In this paper, Analog VLSI CMOS circuits that implements different mathematical 
functions, equations, or relations such as “Addition, Subtraction, Multiplier, Quadratic, 
Square Root, Linear, and Hyperbolic Tangent relations” with limited and wide range varia-
tions are presented. These relations and functions are useful for analog neural network hard-
ware and analog signal processing implementation. 
 
Keywords: CMOS VLSI implementation, analog circuit, mathematical equations, neural net-   
                    work, spice simulation 

 
INTRODUCTION 

 
Although high performance bipolar transistors multipliers have been available for 

some time, the CMOS multiplier implementation is still a challenging subject especially for 
low-voltage/low-power circuit design  (Han & Sinencio, 1998). The transistors can be biased 
in Strong Inversion and Weak Inversion. Weak inversion is widely used in such circuits, but 
often it leads to low precision (Prodanov & Green, 1997). Functions such as “Addition, Sub-
traction, Multiplier, Quadratic, Square Root, Linear, Hyperbolic Tangent relations” are pro-
foundly required and are the key computational elements in analog signal processing “Mix-
ers, Modulator, etc…” and analog neural networks. The massively parallel analog systems 
have demonstrated potential for solving a wide range of difficult problems, and thus analog 
computing techniques have become more widespread (Saxena & Clark, 1994). Analog neural 
networks are heavy parallel analog systems, which are used and are demonstrated in solving a 
wide range of real world problems (Annema, 1995). Multi Layer Perceptron MLP trained by 
the back propagation algorithm needs neurons connected to synapses. Each synapse needs a 
multiplier to multiply the input times the weight  (Bo et al., 1999; Chiblè, 1997; Chiblè, 
2000; Valle et al., 1996; Saxena & Clark, 1994; Ghandour & Chiblè, 2007) and also needs 
another multiplier to multiply the input times the error transmitted from the neuron "tutorial 
of CMOS Circuits “trans-conductance multiplier” is presented in  (Han & Sinencio, 1998)". 
Each neuron needs an addition relation “that adds all its inputs”, non-linear relation “between 
the input and the output of the neuron” such as hyperbolic tangent, difference function “that 
needs the difference between the output and the target of the neuron”, derivative relation “that 
compute the derivative of the output”. The analog neural networks system may contain tenth 
of thousands of these relations, because of that the area and the power consumption of the 
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CMOS VLSI implementation must be as small as possible. The purpose of this paper is to 
present circuits that implement these mathematical relations or equations.  

 
In this paper the following sections are presented: Quadratic relation, Wide range 

quadratic relation, Square root-linear and difference relations, Parametric Wide-Small range 
linear and Parametric Wide quadratic relations, Wide Range “Linear & Quadratic” Multiplier, 
Simulation Results, and finally the conclusions. 

 
QUADRATIC RELATION 

 
Figure 1 shows three transistors that create a quadratic relation between the current 

I1 and the input voltage Vw. It is a simple circuit used to convert voltage into current. 

 
Figure 1. Quadratic relation circuit. 

 
If the transistor M1 works in strong inversion (i.e. condition (A) must be verified) 

and saturation region (i.e. condition (B) must be verified), the current I1 (channel length 
modulation is neglected) is given by (Vittoz, 1994): 
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L  is the transfer parameter, n is the slope factor usually smaller than 2 
which tends to 1 for very large values of the gate voltage  (Vittoz, 1994); µ1 is the carrier 
mobility of the transistor M1, Cox is the gate oxide capacitor per unit area,  (W/L)1 is the 
channel width-to-length ratio of M1, VTH1 is the gate threshold voltage of  M1, and V1  is the 
source voltage of  M1. Vdd value depends on the type of technology; it may be either 5V or 
3.3V. 

 
Please note that the above equation is the simplified expression of the transistor 

model presented in (Vittoz, 1994), but in fact if the gate source voltage equals to the thresh-
old voltage, the drain current is equal to a small current Is (called the specific current) and not 
to zero as in the above equation. While if the gate source voltage is lower than the threshold 
voltage, the transistor is in weak inversion and the drain current is less than Is and it has an 
exponential relation with respect to the gate source voltage. Is value depends on  (W/L) val-
ues. The dimensions of the transistors M1 and M2 can be designed in a way as to decrease the 
specific current value.  
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The current that passes in M1 is equal to the current that circulates through M2. If 
the transistor M2 works in strong inversion (V1>VTH2) and it is always in saturation because 
its drain-gate voltage is zero.  Then the current of M2 (channel length modulation is ne-
glected) is given by: 

( )221
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β    →

   

2
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β
I

nVV TH +=  

 
 By substituting the value of V1 in the previous equation of I1 current of transistor 
M1, the equation becomes as follows: 
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 Equation 1 

where Von = VTH1 + n VTH2 ; ßn is given by: 
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 Conditions (A) and (B) must be verified. The condition (B) is always satisfied, 
because it can be rewritten as follows: 

111 THddw VVVVnV −−+≥  
 

 If Vw = 0V the condition (B) is satisfied and if  (Vw = Vdd) it is also satisfied. By 
substituting V1 in the condition (A), we obtain the following condition: 

2
10 2 β

I
nw nnVV +>  

 If I1=0 Then Vw = Von.  In conclusion, the condition (A) is satisfied if the weight 
voltage is greater than Von.  
 

WIDE RANGE QUADRATIC RELATION 
 

 To work with larger Vw, we add five transistors to Figure 1 as shown in Figure 2 
that creates a quadratic relation between the current I2 and the input voltage Vw. 
 

 
 

Figure 2. Wide range quadratic relation circuit (Ib = I1 + I2). 
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 A similar analysis to obtain the output current I2 can be performed:  
 

( )202 2 pw
p VV
n

I −×=
β  Equation 2 

where Vop  and ßp are given by:   
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 The current Ib is given by (I1+I2): 
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 Note that, I1 and I2 have the same sign. By substituting the value of I1 and I2 in the 
above equation, we obtain: 
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 By designing the transistors’ dimensions, we can assume that 0βββ == np and 
000 VVV np == . Then Ib is given as follows: 
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0β  Equation 3 

 
 Note that I1 & I2 have the same sign in Figure 2. To make the signs different be-
tween I1 & I2, Figure 3 is proposed. 

 
 
 

Figure 3. Difference between I2 & I1. 
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 The equation of Ib2 is given by: 
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 The above equation can be written in the following mode: 
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β  Equation 4 

 
SQUARE ROOT, SMALL RANGE LINEAR AND DIFFERENCE RELATIONS 

 
The following circuit is famous and well known and it is called as OTA operational 

transconductance amplifier. It can be used to produce a linear relation or a square root rela-
tion between the output current Iout  and the input current Ib. The relation type depends on the 
maximum input current and on the dimensions of the transistors M4 and M5 (Valle et al., 
1996; Vittoz, 1994; Mead, 1989). Vin is the input voltage and  Vref equals to Vdd /2.  

 
If the maximum input current Ib, and the dimensions of the transistors M4 and M5 

are designed in order to work in strong inversion, then the output current Iout is given by 
(Chiblè, 2000; Chiblè, 2003a; Chiblè, 2003b): 
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Figure 4. Square root or linear relation circuit. 
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The relation between Iout & Ib is a square root and the relation between Iout & Vin is 
linear. If the maximum input current Ib, and the dimensions of the transistors M4 and M5 are 
design in order to work in weak inversion, then the output current Iout is given by (Mead, 
1989): 

⎟
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If |Vin – Vref | <<2nVt or Vin varies in the range [Vref -2nVt: Vref +2nVt], then the 
last equation can be rewritten as follows: 
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The relation between Iout & Ib and the relation between Iout & Vin are linear.  Equa-

tion 5 and Equation 6 can be combined into one equation as follows (Please note that in all 
next equations SI stands for Strong inversion and WI for stands for Weak inversion): 
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Equation 7 can be simplified as follows (Linear relation between Iout & Ib if M4 & 

M5 in Weak inversion, otherwise Square root relation in Strong Inversion): 
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where the parameter a can take positive and negative values and it is given by: 
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To obtain the difference function, Equation 7 can also be simplified in the follow-
ing way: 
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where the parameter b “it can take only positive values” is given by: 
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Vin can be the first variable input voltage (V1) and Vref the second variable input 
voltage (V2). Then V1-V2 equals to the (Iout/b) value or Iout is proportional to V1-V2.    
 

Equation 7  is voltage to current relation between Iout & Vin "the input is voltage and 
the output is current". It can also be seen as current to voltage, or voltage to voltage or cur-
rent-to-current by adding Resistor “designed by Two CMOS transistors PMOS and NMOS” 
to Figure 4 as follows (see Table 1): resistor R1 between Vin & Vref to convert the input volt-
age to input current; and Resistor R2 between Iout and Vref to convert the output current to 
output voltage (see Figure 5). The value of R1 and R2 are controlled by the Vn1, Vp1 , Vn2 and 
Vp2.   It is important to note that the circuit in Figure 5 will be connected to another circuit in 
Artificial Neural Network, in view of the fact that the output voltage Iout*R1 of Figure 5 must 
be go as input to the gate of CMOS transistor of the circuit connected to Figure 5 to be sure 
that Iout will flow only in R2. 

 
 

TABLE 1 

 
Voltage To Current  “Figure 4” ( )refinout VVfI −=  

Current To Voltage “Figure 5” ⎟⎟
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Figure 5. Figure 4 with input current and output voltage. 
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PARAMETRIC WIDE-SMALL RANGE LINEAR AND PARAMETRIC WIDE 
QUADRATIC RELATIONS 

 
 If the circuit in Figure 2 is combined with the circuit in Figure 4, then the circuit in 
Figure 6 is obtained. 

 

 
 
 

Figure 6.  The circuit in Figure 2 + the circuit in Figure 4. 
 
 

Consequently, Equation 3 is substituted in Equation 7 as in the following equation: 
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Where 
 
1) Vw varies in the range [0: Vdd]; 
2) Vin varies in the range [Vref -

4,5
4

β
bnI : Vref +

4,5
4

β
bnI ] if M4 and M5 work in 

strong inversion; 
3) Vin varies in the range [Vref -2nVt: Vref +2nVt]  if  M4, M5 work in weak inversion. 
 

It is clear that Vw range is wide [0:Vdd], while Vin range is smaller then Vw and its 
value depends on the M4 & M5 inversion region. Note that, if M4 and M5 work in strong 
inversion in Figure 6, the quadratic relation in Equation 3 substituted in the square root rela-
tion in Equation 7  becomes linear. Equation 10 can be seen as two-quadrant multiplier with 
respect to Vin and not Vw. It can be viewed in two modes: 

 
Mode1: 
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where the parameter a1 that can take positive and negative values, it is given: 
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Note that: (1) The above equation gives us a wide range linear relation between Iout 

and Vw. While in Figure 4 & Equation 7 the range between Iout and Vin is limited.  (2)It also 
gives us a wide range quadratic relation between Iout and Vw. (3)The relation between Iout and 
Vw is not static but is controlled by a parameter a1, which depends on the input Vin, while in 
Figure 2 and Equation 3 the quadratic relation is static and in Figure 4 & Equation 7  the lin-
ear relation between Iout and Vin is static as well. 
 
Mode2: 

( )refinout VVbI −= 1  Equation 12 

 
where the parameter b1 that can take only positive values, and it is given: 
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Note that: (1) The range of Vin is limited “not as wide as Vw” and depends on M4 & 

M5 inversion region.  (2) The Equation 12 is similar to Equation 9. However, here it is con-
trolled by a parameter b1 that depends on Vw and not by the parameter b, which depends on 
Ib. (3) The linear relation in the Equation 12 can be considered dynamic, while that of Equa-
tion 9 is static.  (4) Equation 12 can be considered as a two quadrants multiplier with b1 as a 
parameter that has always the same sign. 

 
 

WIDE RANGE “LINEAR & QUADRATIC” MULTIPLIER 
 
 
From the previous section the following results can be obtained:  (1) Equation 12 & 

Figure 6 can be seen as a linear two-quadrant multiplier & the linear range of the multiplier 
depends on M4, M5 if they are working in strong or in weak inversion;  (2) Equation 11 can-
not be seen as two quadrants multiplier. It can be seen as one-quadrant only (if a1 > 0  or Vin 
> Vref” and Vw > V0). 

 
Now to make Four Quadrant multiplier, the following three steps must be done: (1) 

Add another OTA (M13, M14, M15, M16) to the circuit in Figure 6 as shown in Figure 7;  
(2) Take the output as the sum of Iout1 and Iout2; (3) Vin must be connected to the gates of M4 
and M14 and Vref  to M5 and M13.  Because if Vref in M14 and Vin in M13, Iout1 and Iout2 will 
have the same sign and then the multiplier will remain two-quadrant as in Figure 6. This mul-
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tiplier can be viewed as a new version of the multiplier presented in (Chiblè, 2000;  2003a; 
2003b), which take M13 & M14 as PMOS connected directly to M10, M15 & M16 as 
NMOS, and eliminate M11, M12. 

 

 
Figure 7. Four-quadrant multiplier. 

 
 Then the output current (Iout = Iout1+ Iout2) of the four-quadrant multiplier is given by:  
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 Assume “by designing” that 1β = 4,5β = 14,13β , then Iout becomes as follows:  
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Equation 13 

 
 Explanation of all previous equations are summarized in  TABLE 2. 
 

SIMULATION RESULTS 
 

 The circuit has been designed and simulated by using WinSpice “wspice3 simulator 
for Windows” and by using the Parameters of the technology AMIS CMOS 0.35um and by 
using all models (typical, fast, slow), which is used for analog implementation.  The dimen-
sions “width and the length” of the MOS transistors have been computed on the base of the 
technology parameters (e.g. the mobility of the electron, oxide capacitor, etc.). Also, the di-
mensions of the transistors are calculated and designed based on the following considerations: 
1) M1,M2,M3 are designed in a way to create I1 with Von approximately equal to Vref; 2) 



Lebanese Science Journal, Vol. 8, No. 1, 2007 

 

85 

M8,M9,M10,M11,M12 are designed in a way to create I2 with Vop approximately equal to 
Vref; 3) M4, M5, M13, M14 are designed in a way to make OTA work in weak inversion or in 
strong inversion; 4) M6, M7, M15, M16 are designed as current mirror. The dimensions are 
as follows: M1=1/1 - M2=4/8 - M3=1/8 - M6=4/4 - M7=4/4 - M8=1/1 - M9=4/8 - M10=4/8 - 
M11=4/8 - M12=4/8 - M15=4/4 -M16=4/4 – (weak inversion M4=25/2-M5=25/2-M13=25/2-
M14=25/2) – (strong inversion M4=1/3-M5=1/3-M13=1/3-M14=1/3). The Maximum Power 
dissipation “MPD” of the circuit is given by multiplying the number of branches times the 
maximum current in the branch times the power supply voltage. 

TABLE 2 

 Explanation of All Equations in This Paper 

Number Relation Type 

Equation 1 Static Quadratic relation between output current and input voltage that varies 
in the range “V0 < Vw < Vdd”. 

Equation 2 Static Quadratic relation between output current and input voltage that varies 
in the range “0 < Vw < V0. 

Equation 3 “Equation 1+Equation 2” Static Quadratic relation between output current and 
input voltage that varies in the range “0 < Vw < Vdd”. 

Equation 4 “Equation 1-Equation 2”  Static Quadratic relation with 0< Vw < Vdd with 
positive and negative output current (It has positive and negative values). 

Equation 5 Static Square Root Relation with respect to Ib which varies between 0 and Ib-

max. 
Equation 6 Static Linear Relation with respect to Ib which varies between 0 and Ibmax. 
Equation 7 “Equation 5+Equation 6” Static general equation in strong and weak inversion 

Equation 8 It is a linear relation “Strong Inversion” or Square root relation “Weak inver-
sion”- Static relation 

Equation 9 Static difference linear relation 

Equation 10 
Two quadrant multiplier that multiply Vin by Vw where Vin can be positive or 

negative and Vw is only positive. It can be viewed in two modes “as in 
Equation 11 and Equation 12”. 

Equation 11 

Wide range linear “Strong Inversion” relation & Wide Range Quadratic rela-
tion “Weak inversion”. It is a Dynamic relation where the parameter a1 (which 

depends on Vin)  controls the linear or quadratic relation “While note that 
Equations 1,2,3,4 are Static and not Dynamic” 

Equation 12 

Linear relation “in Strong or Weak inversion”, the wideness of the linear rela-
tion in strong inversion is larger than in weak inversion – it is dynamic relation 

where the parameter b1 (which depends on Vw )  controls the linear relation 
slope “While note that Equation 9 is Static and not Dynamic”; 

Equation 13 It can be considered four-quadrant multiplier, which multiplies Vin by Vw 
where Vin & Vw can be positive or negative. 

 
In this circuit the number of branches equals to Five [(1) M1,M2 - (2) M8,M9 - (3) 

M10,M11 - (4) M3,M4,M5,M6,M7 - (5) M12,M13,M14,M15,M16]; the maximum current in 
branch equals to 6µa; and the power supply voltage equals to 3.3V. Then MPD = 5 * 6µA * 
3.3V = 99µW. If we reduce the maximum current then we can reduce the maximum power 
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dissipation. For example if maximum current is 1ua then MPD=16.5µW.  The simulation 
results are presented in this section as follows:   

A) I1 & I2 versus Vw 

 
Figure 8 (right Figure) shows the simulation of the circuit proposed in Figure 1 and 

Equation 1 “I1 (micro ampere) versus Vw (Volt)” where Vw varies between 0V and 3.3V with 
step 0.2 and I1 varies between 0ua and 6ua. Figure 8 (left Figure) shows the simulation of the 
circuit proposed in Figure 2 and Equation 2 “I2 versus Vw” where Vw varies between 0V and 
3.3V with step 0.2 and I2 varies between 0ua and 6ua”. 

 
 

 
Figure 8. The simulation of the circuit proposed in Figure 1  & Equation 1  “I1 versus 

Vw”  (right Figure) and Figure 2 & Equation 2  “I2 versus Vw” (left Figure). 

 
 

B) Ib & Ib2 versus Vw 

 
Figure 9 (right Figure) shows the simulation of the circuit proposed in Figure 2 and 

Equation 3 “Ib versus Vw” where Vw varies between 0V and 3.3V with step 0.2 and Ib varies 
between 0ua and 6ua”. Figure 9 (left Figure) shows the simulation of the circuit proposed in 
Figure 3 and Equation 4  “Ib2 versus Vw” where Vw varies between 0V and 3.3V with step 0.2 
and Ib2 varies between -6ua and 6ua”. 

 
 

 
Figure 9. The simulation of the circuit proposed in Figure 2 and Equation 3  “Ib versus 

Vw”  (right Figure) & in Figure 3 and Equation 4  “Ib2 versus Vw” (left Figure). 
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C) Iout versus Ib 

 
Figure 10 (right Figure) shows the simulation of the circuit proposed in Figure 4 

and Equation 5 with M4 and M5 work in strong inversion; Iout versus Ib with Vin as a parame-
ter that varies between 1.55V and 1.75V with step 0.05V while Ib varies between 0ua and 6ua 
with steps 0.1ua and Iout varies between -2ua and 2ua. Figure 10 (left Figure) shows the 
simulation of the circuit proposed in Figure 4 and Equation 6 with M4 and M5 work in weak 
inversion; Iout versus Ib with Vin as a parameter that varies between 1.55V and 1.75V with 
step 0.05V while Ib varies between 0ua and 6ua with steps 0.1ua and Iout varies between -5ua 
and 5ua. 

 

 
Figure 10. The simulation of the circuit proposed in Figure 4 “Iout versus Ib” & Equation 

5  (right Figure) & Equation 6 (left Figure). 

 
D) Iout versus Vin 

 
Figure 11 shows the simulation of the circuit proposed in Figure 4  “Iout versus Vin 

where Vin varies between 0V and 3.3V with steps 0.2V while Iout varies in the range -6ua and 
6ua”. The right Figure is related to Equation 5 where the transistors M4 and M5 work in 
strong inversion and the left Figure is related to Equation 6 where the transistors M4 and M5 
work in weak inversion. It is clear from Figure 4 that the linear range is more wide in strong 
inversion than in weak inversion. 

 
Figure 11. The simulation of the circuit proposed in Figure 4 “Iout versus Vin” & Equa-

tion 5  (right) & Equation 6 (left). 
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E) Iout versus Vw with parameter a1 

 
The Figure 12 (right) shows the simulation of the circuit proposed in Figure 6 and 

Equation 11 “Iout versus Vw with Vw varies between 0V and 3.3V with steps 0.2V and Vin as a 
parameter varies between 1.55V and 1.75V with steps 0.025V” where M4 and M5 work in 
weak inversion while in the (left) M4 and M5 work in strong inversion. The right figure gives 
a wide range quadratic relation while the left figure gives a wide range linear relation, which 
are controlled by the parameter a1 which is related to Vin. 

 

    
Figure 12. The simulation of the circuit proposed in Figure 6  & Equation 11 “Iout versus 

Vw” with M4 and M5 work in weak inversion (right) and with M4 and M5 work in 
strong inversion (left). 

 
F) Iout versus Vin with parameter b1 

 
The Figure 13 (right) shows the simulation of the circuit proposed in Figure 6 and 

Equation 12 “Iout versus Vin with Vin varies between 1.45V and 1.85V with steps 0.1V and Vw 
as a parameter varies between 0V and 3.3V with steps 0.55V” with M4 and M5 that work in 
weak inversion while the (left) with M4 and M5 that work in strong inversion. The right and 
left Figures show Linear Relation in a special range, which controlled by the linear parameter 
b1 (right) and quadratic parameter b1 (left). 

  
Figure 13. The simulation of the circuit proposed in Figure 6  & Equation 12 “Iout versus 

Vin” with M4 and M5 work in weak inversion (right) and with M4 and M5 work in 
strong inversion (left). 
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G) Iout versus Vw with paramter Vin 
Figure 14 (right) shows the simulation of the circuit proposed in Figure 7 and 

Equation 13 with M4 and M5 work in Weak inversion “Iout [-5ua:+5ua] versus Vw [0V:3.3V] 
with parameter Vin that varies in the range [1.55V:1.75V] with step 0.01V”. Figure 14 (Left) 
shows the simulation of the circuit proposed in Figure 7 and Equation 13 with M4 and M5 
work in Strong inversion “Iout [-2ua:+2ua] versus Vw [0V:3.3V] with parameter Vin that varies 
in the range [1.55V:1.75V] with step 0.01V”. 

 
Figure 14. The simulation of the circuit proposed in Figure 7 and Equation 13 “Iout ver-
sus Vw” with M4 and M5 work in weak inversion (right) and with M4 and M5 work in 

strong inversion (left).  

 
H) Iout versus Vin with parameter Vw. 

Figure 15 (right) shows the simulation of the circuit proposed in Figure 7 and 
Equation 13 with M4 and M5 work in Weak inversion “Iout [-5ua:+5ua] versus Vin 
[1.55V:1.75V] with parameter Vw that varies in the range [0V:3.3V] with step 0.33V”. Figure 
15 (left) shows the simulation of the circuit proposed in Figure 7 and Equation 13 with M4 
and M5 work in Strong inversion “Iout [-5ua:+5ua] versus Vin [1.25V:2.05V] with parameter 
Vw that varies in the range [0V:3.3V] with step 3.3V”. 

 

 
Figure 15. The simulation of the circuit proposed in Figure 7 and Equation 13 “Iout ver-
sus Vin” with M4 and M5 work in weak inversion (right) and with M4 and M5 work in 

strong inversion (left). 
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It is clear that from Figure 14 left and Figure 15 left, there is a good linear four 
quadrant multiplier with Vw that varies in the range [0V:3.3V] and Vin that varies in the range 
[1.25V:2.05V]. While from Figure 14 right and Figure 15 right, there is a non linear "quad-
ratic relation" four quadrant with Vw that varies in the range [0V:3.3V] and Vin that varies in 
the range [1.55V:1.75V]. 

 
CONCLUSION 

 
In the paper CMOS circuits were presented that implement different relations: 

Static & Dynamic Linear and Wide linear Relations; Static & Dynamic Wide Quadratic rela-
tions; Static Square Root Relations; Static & Dynamic difference linear relations; Two quad-
rant multiplier; and Four-quadrant multiplier. These relations can be used in many applica-
tions in signal processing and neural networks. All of these circuits can be realized in small 
area and low power consumptions. Figure 4 & Equation 9 can be used in the neuron module 
to compute the error which is the difference between the neuron target and the neuron output 
which is based on the random initial weights.  Figure 7 & Equation 13 can be used in the 
synapse module as the analog multiplier that multiply the input by the weight and also as the 
analog multiplier that multiply the backward error “which is transmitted from the neuron 
toward the synapse” by the weight. The future work will be focused on using these relations 
to implement the neuron and synapse module to design Artificially Neural Network for spe-
cific applications. 
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