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ABSTRACT 
 

The aim of this paper is to estimate the maximum Peak Ground Acceleration (PGA) 
of the three components (vertical, east-west and north-south) using the feed-forward artificial 
neural network method (ANN) with a conjugate gradient backpropagation rule for the 
training. The inputs are the magnitude, the focal depth, the epicentral distance, the thickness 
of the sedimentary layers below the site down to a shear wave velocity equal to 800 m/s and 
the corresponding resonant frequency, while the target result is the PGA. Data collected from 
the KiK-net seismic data base in Japan have been used. 1850 records at 102 sites are 
considered in the training phase, while 326 records are kept for the test phase. The obtained 
results show that PGA computed using the ANN method are close to those recorded. Finally, 
a simple example is presented in which 55 records are used to compare the ANN method with 
two Ground Motion Prediction Equations (GMPEs). This example demonstrates how the ANN 
works and shows its potential.  
 
Keywords: artificial neural networks, KiK-net network, peak ground acceleration, magnitude, 
                   epicenral distance, resonance frequency  
 

INTRODUCTION 
 

An important parameter for assessing the earthquake effects at a given location is 
the Peak Ground Acceleration (PGA). The importance of this parameter is revealed in the 
development of seismic zoning maps and the construction of design response spectra used in 
earthquake-resistant construction rules. The question is how to estimate PGA at a site where 
no accelerometric recording station is installed. 
 

In order to predict PGA at a site, one usually relies on empirical GMPEs. These 
equations relate PGA to earthquake and site parameters. The development of such equations 
requires large database of recorded PGAs and associated metadata on earthquakes and sites 
(Ambraseys & Douglas, 2003; Takahashi et al., 2000; Lussou et al., 2001). These Ground 
Motion Prediction Equations (GMPEs) reflect the combination of three effects (source, path 
and site) using a physical model.  
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A functional form is given a priori based on the comprehension of the mechanisms 
that influence the surface signal. Douglas (2003) conducted an analysis on the Ground-
Motion Prediction Equations developed in the last 30 years and found that each equation was 
developed using a variety of input parameters depending on available data which varies 
greatly with geographical regions. These authors also show that the functional forms vary 
very much as well. 
 

To obtain a relationship Ground Motion Prediction Equation for PGA in a simple 
and easy way using a large amount of available seismic data, a new approach, based on 
artificial neural networks (ANN), is proposed in this paper. This method does not require a 
priori functional form. 
 

This tool has proved its efficiency in solving complex nonlinear problems. The 
ANN has received, in recent years, a growing interest by the scientific community in the field 
of earthquake engineering and seismic risk assessment: site effect assessment in 1-D 
(Giacinto et al., 1997), or 2-D (Paolucci et al., 2000); generation of time histories compatible 
with target response spectrum (Ghaboussi & Lin, 1998; Chu-Chieh & Jamshid, 2001); 
estimation of artificial time history and related spectral response (Seung & Sang, 2002; Derras 
et al., 2010); and evaluation of liquefaction potential (Goh, 1994). In the same context, a 
neural model was developed by Baziar and Gharbani (2005) to predict the horizontal 
displacement due to soil liquefaction. Prediction of aftershocks from the main shock using a 
Bayesian neural network was also carried out by Vincenzo et al. (2006). Also, three other 
works were done. The first by Alves (2006) for the generation of the time history, the second 
for evaluation of the peak ground velocity (PGV) in the western region of the United States 
(Ben-yu et al., 2006), and the third by Irshad et al. (2008) on the evaluation of strong motion 
peak in Europe. 
 

Regarding the estimation of PGA by ANN method, two recent studies were 
conducted by Tienfuan and King (2005) and Kemal and Ayen (2008). In the first article, the 
authors have used earthquake magnitude and focal depth, as well as epicentral source-to-site 
distances, as inputs for the ANN method, to estimate PGA. They used a limited network for 
ten stations deployed along the train tracks in Taiwan. The second article was focused on 
PGA prediction in the northwest region of Turkey. The authors used earthquake moment 
magnitude, hypocentral distance, focal depth, and site conditions as inputs. Three different 
artificial neural networks are used by Kemal and Ayen (2008) for PGA prediction, namely, 
feed-forward back-propagation (FFBP), Radial Basis Function (RBF), and Generalized 
Regression Neural Networks (GRNNs). Testing of result indicated that the FFBP gives the 
best estimation compared to GRNN and RBF. 
 

An artificial neuron is a simple mathematical operator. This neuron receives one or 
more inputs and sums them to produce an output. Usually the sum of each node is weighted 
by coefficients (known as weights of connections or synaptic weights), and the sum is passed 
through a non-linear function known as an activation function. These functions usually have a 
sigmoid shape. They are also often monotonically increasing, continuous, differentiable and 
bounded. The activation function used in this article is Tanh-sigmoid function: f(x) = Tanh(x). 
This choice was made after several tests. 
 

The feed-forward back-propagation (FFBP) has a quite particular structure in which 
neurons are organized in successive layers (Figure 1). The first layer is called input layer, the 



Lebanese Science Journal, Vol. 12, No. 2, 2011 
 
 
 

103 

last layer is called output layer, and all intermediate layers are called hidden layers. Each 
neuron in a hidden layer receives signals from the previous layer net and transmits the result 
to the next layer O. 
 

The operations of each jth neuron are described by the following two equations: 

     (1) 

And the output for the same neuron is expressed by:  
wij being the connection weights between the ith neuron of the previous layer and the jth 
neuron of the current layer and f is the activation function. 
 

 
Figure 1. Feed-forward back-propagation (FFBP) (Yu et al., 2002). 

 
The training used for the FFBP neural network is supervised. The training data 

consist of many pairs of input/output training patterns. The algorithm used for this case is 
known as conjugate gradient backpropagation. This algorithm is almost as fast as the LM 
algorithm (Moré, 1978) on function approximation problems (faster for large networks). Its 
performance does not degrade when the error is reduced. The conjugate gradient algorithms 
have relatively modest memory requirements (Demuth et al., 2009).  
 

The back-propagation training method is divided into two stages (Coulibaly, 1999): 
propagation phase to present a configuration entry to the network and then propagate this 
entry from the input layer to the output layer through the hidden layers; and a back-
propagation phase, to minimize the error on all the examples. This represents the mean 
squared error (MSE). It is the difference between desired and calculated responses for all data 
in the training set, or simply the difference between the desired outputs and those calculated 
by the ANN, defined by eq. (2).  

        (2) 
 

Where E is the data number, P is the number of neurons in the output layer (here 
P=1), dkl is the desired output (in this case recorded PGA) for output neuron k and lth data. ykl 
is the output estimated (in this case model prediction of PGA) for output neuron kth (here k=1) 
and lth data. The MSE can be used to determine how well the network outputs fit the data.  
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In addition, the correlation coefficeint (R) was used. It indicates the degree of linear 
dependence between variables. In this study, the PGA are the variables recorded and those 
produced by the ANN by definition, the correlation coefficient between a network output yl 
and a desired output dl is (k=p=1): 

                   (3) 

  are the mean of Y = {y1, y2,…,yl,….,yN} and D = {d1, d2,…,dl,….,dN } vectors 
respectively. 
 

But R is strongly affected by extreme values (Kemal & Ayen, 2008). To fill this 
gap, another quality measure is the normalized root mean square error (NRMSE) (equation 4). 
The value is often expressed as a percentage. A low NRMSE reflects a better fit. 

minmax dd
MSENRMSE
−

=                     (4) 

The input parameters used generating the maximum PGA of the three directions in 
the free-field are the MJMA magnitude (Japanese Meteorological Agency magnitude), the focal 
depth D (km), the epicentral distance d (km), the thickness of the sedimentary layers Z800 (m) 
below the site down to a shear wave velocity equal to 800 m/s and the corresponding resonant 
frequency f800 (Hz) (Figure 2). 

 
Figure 2. Site seismic parameters. 

 
The accelerogram can be described as the convolution of the source effect and two 

filters, the path effect and the site effect. The source is describe by its magnitude which 
reflects the energy release during the earthquake. PGA is directly related to the earthquake 
magnitude: the larger the magnitude, the larger the PGA. The seismic waves attenuate while 
propagating through the crust, and the amplitude decrease is related to the source-to-site 
distance. This attenuation depends on the depth of the earthquake focus and on the epicentral 
source-to-site distance. PGA decreases with increasing distance from the source. 
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Moreover, site effects might influence PGA. In most seismic codes, site effects are 
taken into account by the introduction of the shear velocity at the site. In the Uniform 
Building Code, UBC97 (Klimis, 1998) average shear wave velocity down to thirty meters 
(Vs30) is considered. In some cases, a site classification based on Vs30 is rather used. In both 
cases, only superficial properties of the soil are considered. However, a deeper geological 
structure such as sedimentary basins can have a strong influence on the seismic signal 
(Lussou, 2001). 
 

In this work two site parameters Z800 and f800 are used which take into account the 
thickness of the sedimentary layers and the average shear wave velocity in this sedimentary 
layer. Z800 is the depth down to a velocity of 800 m/s. f800 is estimated from:  

   (5) 
 

hI represents the thickness of the Ith layer and VsI is the shear velocity of the Ith layer.  
 

SELECTED KIK-NET DATASET 
 

The database used in this study includes 2176 accelerograms, from 238 earthquakes 
and 102 stations, freely available at: http://www.kik.bosai.go.jp (Figure 3).  
 

The KiK-net network is composed of paired accelerometric sensors at the surface 
and at depth (between 80 and 1500 meters) (Pousse, 2005). The distribution of the data with 
respect to epicentral distance d, focal depth D, and magnitude MJMA) is given in Figure 4.  

 

 
 

Figure 3. Distribution of number for ground motion used for PGA estimations. 
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Figure 4. Magnitude-distance (top) and magnitude-focal depth (bottom) distributions 
for the training phase (left), the testing phase (right). "+" represents the average data. 

 
 
The number of records used for the training of this neural model is 1850, and 326 

of 2176 records are kept for the test phase. The "ViewWave" software version 1.53 
(Kashima, 2007) was used to read the accelerograms, due to compatibility between this 
software and KiK-net records.  
 

 
The KiK-net data also provide geotechnical characterization for each station. This 

information consists of lithology description, velocity profiles for both P and S waves. The 
Z800 is obtained directly from these profiles. Table 1 represents the recording stations used in 
this study with their site parameters Z800 and f800. 
 

 
 

ARTIFICIAL NEURAL NETWORK MODEL 
 

The Artificial Neural Network Model of feed-forward back-propagation (FFBP) 
with a total connection is used to estimate the PGA from the source, path and site parameters 
(Figure 5). The NeuroSolutions software version 5.07 is used for this task (NeuroDimension, 
Inc). 

 
The input parameters are chosen after several tests, in order to quantify the 

influence of each parameter and each group of parameters on the calculated PGAs. The PGA 
is expressed in natural logarithm (Ln) to reduce non-linearity in the model and it allows the 
analysis of normally distributed data. 
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TABLE  1 
 

Recording Stations Used in this Study 
 
 

Site code Z800 
(m) 

f800 
(Hz)  Site code Z800 

(m) 
f800 
(Hz)  Site code Z800 

(m) 
f800 
(Hz) 

EHMH01 10 8.25  KGWH01 34 2.04  SIGH03 39 2.61 
EHMH02 16 4.54  KGWH02 56 1.09  SIGH04 36 3.36 
EHMH03 12 11.42  KOCH01 28 2.28  SMNH01 22 4.32 
EHMH04 200 0.70  KOCH02 8 3.95  SMNH02 25 4.59 
EHMH05 30 3.02  KOCH03 10 11.03  SMNH03 34 3.36 
EHMH06 12.5 9.09  KOCH04 4 25.00  SMNH04 11 2.88 
EHMH07 20 3.51  KOCH05 6 15.42  SMNH05 14 7.50 
FKOH01 13 5.83  KOCH06 8 6.25  SMNH06 30 2.40 
FKOH02 25 2.39  NARH01 26 2.89  SMNH07 60 1.74 
FKOH03 25 4.32  NARH02 12 4.71  TKSH01 16 4.82 
FKOH04 35 3.91  NARH03 12 4.89  TKSH02 14 3.65 
FKOH05 3 11.67  NARH04 22.75 5.29  TKSH03 20 3.52 
HRSH01 28 3.42  NARH05 18 3.82  TTRH01 32 3.40 
HRSH02 12 4.11  NARH06 13.75 3.85  TTRH02 100 1.31 
HRSH03 20 4.63  NIGH11 185 0.71  TTRH03 74 1.11 
HRSH04 16 4.38  NIGH12 110 1.58  WKYH01 10 5.10 
HRSH05 56 2.14  OKYH01 44 1.53  WKYH02 16 3.51 
HRSH06 51 2.73  OKYH02 8 12.91  WKYH03 16 5.74 
HRSH07 52 2.40  OKYH03 20 2.74  WKYH04 4 53.38 
HRSH08 12 11.41  OKYH04 10 3.77  WKYH05 16 5.59 
HRSH09 14 5.99  OKYH05 10 8.41  WKYH06 5 14.50 
HRSH10 42 1.82  OKYH06 24 5.21  WKYH07 27 2.70 
HYGH01 74 1.39  OKYH07 6 21.25  WKYH08 25 3.33 
HYGH02 14 6.80  OKYH08 12 10.00  WKYH09 76 1.68 
HYGH03 8 6.02  OKYH09 21 4.71  WKYH10 18 4.36 
HYGH04 22 3.61  OKYH10 8 7.81  YMGH02 20 3.58 
HYGH05 13 5.56  OKYH11 20 5.13  YMGH03 24 4.72 
HYGH06 32 2.96  OKYH12 12 7.92  YMGH04 12 7.38 
HYGH07 14 5.55  OSKH01 550 0.23  YMGH05 24 3.80 
HYGH08 24 2.51  OSKH02 600 0.21  YMGH07 20 3.31 
HYGH09 52 2.25  OSKH03 24 3.50  YMGH08 16 3.31 
HYGH10 82 0.96  OSKH04 16 5.39  YMGH09 28 2.59 
HYGH11 50.5 1.51  SIGH01 14 6.25  YMGH10 18 5.50 
HYGH12 13 8.38  SIGH02 6 10.83  YMGH11 16 7.95 
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Figure 5. Neural network input parameters. 

 
To build the neural network, the recommendations given by Seung and Sang (2002) 

were applied using a single hidden layer whose number of neurons is equal to six which is the 
sum of the input and output neurons. The maximum error (ME) tolerated by the neural 
network is obtained through the following relationship (Seung & Sang, 2002) : 

       (6) 
Where  represents the minimum value of the desired output, and 

denotes the number of neurons in the output layer, (here 1).  
 

In addition, the number of epochs is set to 1000 and the updating of weights is done 
by batch (all the inputs in the training set are applied to the network before the weights are 
updated). Moreover, the activation function for neurons in the input and hidden layers is 
Tanh-sigmoid and linear for neurons in the output layers (which is the best combination after 
the tests performed as will be shown later). The tests results are listed in Tables 2, 3 and 4. In 
these lists, the MSE and R for training and testing phases are calculated. 

 
TABLE 2 

 
Influence of Each Parameter on the Model Reliability 

 
Type of 
parameters parameters MSE train R train MSE test R test 

(MJMA) 0.089 0.36 0.091 0.28 
(D) 0.099 0.11 0.111 0.10 Seismic 

Parameters 
(d) 0.075 0.51 0.076 0.48 
(f800) 0.101 0.037 0.106 0.035 
(Z800) 0.098 0.16 0.110 0.13 Site 

parameters  
(f800)+( Z800) 0.097 0.21 0.098 0.18 

 
 

Table 2 lists the MSE and R for different tests using different combinations of 
inputs. From the values of MSE and R, one can notice that each parameter affects differently 
the overall results given by the neural network. The best values of R are 0.51 and 0.48 
associated with small values of MSE equal to 0.075 and 0.076, for the training and testing 
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phases respectively. These values correspond to the epicentral distance d which is the primary 
parameter affecting the PGA. On the other hand, hypocentral depth, resonant frequency and 
sedimentary layer thickness have only a small impact if a single input parameter is 
considered.  

 
TABLE 3 

 
Influence of Combinations of Parameters on the Model Reliability 

 
 

Type of Parameters Parameters MSEtrain Rtrain MSEtest Rtest 
d + D 0.078 0.52 0.083 0.46 
d + M 0.039 0.78 0.048 0.74 Seismic Parameters 
d + D + M 0.038 0.79 0.042 0.77 
d +D +M +f800 0.0342 0.81 0.041 0.78 
d +D +M + Z800 0.033 0.82 0.036 0.80 Seismic Parameters + 

Site Parameters d +D +M +f800 + 
Z800 

0.0203 0.85 0.0205 0.84 

 
Table 3 shows the results using different combinations of input parameters. The best 

values of R are 0.85 for training and 0.84 for testing using all the parameters associated with 
small MSE values. One concludes that all considered input parameters do influence the value 
of PGA. In the following, all five parameters, namely d + D + M + f800 + Z800, will be used as 
inputs to the neural model.  
 

The nature of the activation function has a great influence on the model. One may 
conduct some tests on the neural network to choose the appropriate function for this model 
(Table 4). Five activation functions are tested. 

 
 

TABLE 4 
 

Influence of Different Activation Functions 
 
Activation  
function of 
hidden layer 

Activation  
function of the 
output layer 

MSE 
train 

R 
train 

MSE 
test 

R 
test 

Log-sigmoid Log-sigmoid 0.062 0.74 0.071 0.72 
Log-sigmoid Linear log-Sigmoid  0.064 0.75 0.061 0.69 
Log-sigmoid Linear 0.035 0.80 0.039 0.79 
Tanh-sigmoid Tanh-sigmoid 0.028 0.85 0.031 0.84 
Tanh-sigmoid Linear Tanh-sigmoid 0.032 0.83 0.034 0.82 
Tanh-sigmoid Linear 0.020 0.85 0.021 0.84 

 
 
A speed reading of Table 4 shows that the best combination of activation functions 

is the tangent hyperbolic function for the hidden layer and linear for the output layer. 
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RESULTS AND DISCUSSION 
 

To see if the neural model predicts well the PGA with other data, the comparison 
between the recorded PGAs and the ones estimated by the neural model is represented in 
Figure 6. This test was made with data that are not used in the training phase. The test was 
done with 15% of the total database (326 recordings) (Figure 5), and the PGAs range between 
0.10 and 544.57 gal. This comparison reveals an MSE equal to 0.020 for the training and 
0.021 for the test. 
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Figure 6. Recorded versus predicted PGAs. 

 
To quantify the ability of this model to predict PGA, it was compared with two 

other GMPEs derived for the Japanese region. The first was established by Takahashi et al. 
(2000) and is supposed to be applicable in Japan: 

 
    (7) 

 
Where PGA is in gal (cm/s²), d and D are the epicentral distance and focal depth (in km). “s” 
is the coefficient which depends on the soil type (rock, firm, soft or very soft soil) and Mw is 
the moment magnitude (Figure 7).  
 

The second attenuation relationship chosen to compare with the neural model is the 
one obtained by (Ambraseys & Douglas, 2003). The general form of the equation for 
predicting the PGA is: 

 
     (8) 

 
Where PGA is in m/s², d is the epicentral distance (km), Ms is the surface wave magnitude 
and both SA and Ss are coefficients related to the site effect.  
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To compare the two GMPEs with this neural model, one must take into account the 
difference in the magnitude scales that are used by each model. Figure 7 shows the 
relationship between different types of magnitudes and the moment magnitude Mw. The 
saturation of all the magnitude scale is clear from this figure starting at magnitude around 6 
for ML and around 7.5 for Ms. However, in the magnitude range of 4.5-7.5 of this data set, the 
values of Mw, Ms and MJMA are similar, and consequently no conversion will be performed. 

 

 
Figure 7. Relationship between Mw and the different types of magnitudes (Amr & Luigi, 

2008). 
 

Among the 326 earthquakes used in the test phase, only 55 are used for the 
comparison which have focal depth lower than 19 km which is the limit of validity of 
Ambraseys’s GMPE. 
 

Table 6 shows the performance of each of the three models. The coefficients of 
determination R², show that the PGAs estimated by the neural method are in better agreement 
with the data (R²=0.94) compared with the PGAs estimated from the two GMPEs (R²=0.82 
and R²=0.76). Among the three models used, the neural model NMRSE value of 0.11 is the 
smallest (Table 5).  

 
TABLE 5 

 
Statistical Parameters of Measure 

 
Model chosen R² NRMSE (%) 

(Ambraseys & Douglas, 
2003) 0.76 0.25 

(Takahashi et al., 2000) 0.82 0.17 
Neural model 0.94 0.11 

 
This result is confirmed also by observing the 55 PGAs chosen for this comparison 

(Figure 8). The PGA, which is significantly closer to the middle line y = x is the one 
estimated by the neural model.  
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Figure 8. Comparison of observed and predicted PGA using (a) the Ambraseys GMPE, 

(b) the Takahashi model and (c) the neural model. 
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CONCLUSION 
 

In this study, a new method for deriving Ground-Motion Prediction Equations for 
PGA was proposed based on the feed-forward neural network with a conjugate gradient back-
propagation rule for the training. Data from the dense KiK-net network are analyzed. 
 

No functional form is defined a priori and input parameters are the magnitude JMA 
(MJMA), the epicentral distaince (D), the focal depth (d), and site conditions represented by the 
depth Z800 and the frequency f800   
 

 
The tests performed on the input parameters show that magnitude and distance are 

first order parameters influencing PGA. Focal depth and site parameters have a small 
influence compared to the distance and magnitude. It is interesting to note that focal depth and 
site parameters have an equivalent influence on PGA. The test also shows that a combination 
of all five parameters gives the best results. 
 

The type of activation function plays an important role. This function allows the 
introduction of nonlinearity in the network and therefore allows a better modeling of complex 
phenomena. Another test was conducted to make the choice of the activation function that 
should be used in the neural model. The result shows that the configuration with a hyperbolic 
tangent function for the hidden layer and a linear one for the output layer gives the best 
results.  
 

 
The validation of this neural network model is achieved by comparing results 

obtained by the neural model and those obtained by two classical GMPEs for crustal 
earthquakes: one based on Japanese data (Takahashi et al., 2000) and one based en Euro-
Mediteranean data (Ambraseys & Douglas, 2003). Although the three models use different 
magnitude scales, they are equivalent in the magnitude range of the data and no conversion is 
performed. 
 

 
The results of the comparison show that among the two classical GMPEs, the one 

derived from Japanese data performs better than the other one. This raises the question of 
regional dependence of ground-motion which is a highly debated issue. The results also show 
that the neural network model performs considerably better than the other two. One reason 
could be the use of focal depth as input parameter which is not, or only partially, taken into 
account in classical GMPE. It is believed that the model developped in this paper is a good 
alternative to classical GMPEs and could be used in seismic hazard assessment studies. 
 

 
In the future, the f800 could be replaced by the fundamental frequency at the site f0, 

as determined from H/V measument, which better represents the fundamental frequency of 
the site than the f800 used in the present study. Z800 might also be replaced by Vs30 which is 
now available at many accelerometric stations. Doing so, the ANN model could be tested 
using many different databases around the world. Different kind of neural networks can also 
be used such as the Network Radial Basis Functions (RBF) and the hybrid approach Neuro-
Fuzzy. 
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