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ABSTRACT 

 
The capabilities of Reynolds stress models to predict the hydrodynamic response of 

open channel turbulent flows to fixed bed roughness heterogeneity are analyzed. An algebraic 
model is used, issued from the Reynolds stress transport model of Gibson and Launder 
(1978), adapted by Gibson and Rodi (1989) to simulate the effects of the wall and the free 
surface on the turbulence anisotropy. This model is first tested in parallel free surface flows 
with smooth or rough bottom. Then, it is applied to non-parallel closed or open channel flows 
with different configurations of the wall roughness for which experimental results are 
available. 
 
Keywords: free  surface  flows, wall friction, anisotropy, secondary flows, turbulence, rough- 
                    ness 
 

INTRODUCTION 
 

Turbulent free surface flows, in urbanized or natural media, frequently occur with 
inhomogeneous boundary conditions due to roughness variations of fixed or mobile beds. 
These flows present complexities that often constitute limitations of existing models: this is 
the case for 3D models, founded on one point turbulence closures, as well as for 1D or 2D 
Saint-Venant models, obtained by section or vertical integration and used currently in field 
applications. The calculation of such flows requires second-order closure models of the 
Reynolds stresses allowing an accurate prediction of the turbulence anisotropy that controls 
the generation of secondary flows. Since the first works on Reynolds-stress closures of 
Launder, Reece and Rodi (1975), Zeman and Lumley (1976), Gibson and Launder (1978), 
some authors, like Gessner and Emery (1981), Demuren and Rodi (1984), Celik and Rodi 
(1984), Gibson and Rodi (1989), Launder and Li (1994), Naimi and Gessner (1997), Spezial, 
Sarkar and Gatski (1991), Cokljat and Younis (1995) proposed improvements of second order 
turbulence models to  predict secondary flows in non circular channels. Despite these works, 
many difficulties remain due notably to the effects of large roughness on the turbulence 
anisotropy in the wall region and near the free surface. 
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In the present work, the capabilities of algebraic stress models are analyzed to 
predict the hydrodynamic response of turbulent open channel flows to fixed bed roughness 
heterogeneity. The model is tested first in parallel free surface flows and then in non-parallel 
closed or open channel flows.  

PRESENTATION OF THE ALGEBRAIC MODEL  
 

Mean flow equations  
 
Fully developed flows are considered in straight, rectangular, closed or open 

channel flow with constant bed slope α. In the following, x, y, and z are the longitudinal, 
transverse and nearly vertical coordinates; U,V,W and u, v, w are the (x, y, z)-components of 
the ensemble mean velocity iU  and the velocity fluctuations iu  respectively. The equations 
of the mean motion may be written in the following form, where the equations of secondary 
flow are expressed in terms of the vorticity Ω  and the stream function ψ of secondary 
motions (V, W): 
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In equations (1) to (3) the fluid viscosity was ignored as a consequence of 
developed turbulence assumption. 

 
The algebraic Reynolds stress model  

 
The algebraic model of Reynolds stress tensor, jiuu  used in this work is issued 

from the Reynolds stress transport model of Gibson & Launder (1978). It may be expressed 
as: 
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Where ε  is the dissipation rate of the turbulent kinetic energy 2/uuk jj=  (TKE). The 

anisotropy tensor ijb  is defined as k2/)
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of TKE, 1C  and 2C  are constants. The second term on the right of Eq. (4) represents the 

damping effects of boundary surfaces on turbulent stresses: )
rn

L(f
ii

S  is a surface (wall or 

free surface) proximity function, where n is the unit vector normal to the surface; r is the 

position vector and the characteristic turbulent length scale L is defined as ε= /kL 2/3 . The 
tensors ijij  and HG  are expressed following the formulation of Shir (1973).  

 
This model is applied to fully developed flow by introducing some simplifications. 

And so, the Reynolds tensor normal components 2v  and 2w that drive secondary motion 
vorticity may be written in the following form: 
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The first simplification of the Gibson & Launder (1978) model, concerns the last 
terms in the right-hand side of equations (5) and (6): in fact, the terms z/W2 t ∂∂ν−  and 

y/V2 t ∂∂ν−  regroup the contributions of secondary velocity gradients as proposed by Naot 
and Rodi (1982), (these are neglected in most other models); the turbulent viscosity being 
given by the standard expression: 

ε=ν µ /kC 2
t  in which ConstantC =µ     (7) 

 
In equations (5) to (6), the surface function f regroups the damping effects due to 

the channel bottom and the free surface (in open channel flows) as fswb fff += . For  wbf  

and fsf the formulation of Gibson and Rodi (1989) was taken up: 
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h is the half-height of the rectangular closed channel or the water depth of the open channel; 
h/z=ξ  is the non-dimensional vertical coordinate and a is a constant. The surface function 
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wlf  that represents the damping effect of the lateral walls was expressed in a form similar to 

(8) in terms of the non-dimensional coordinate b/y=ζ  where b is the half-width of the 
channel. 

)b/h,(g
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Where the function g was given by: 
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The second simplification of the generic model concerns the expressions of the 
turbulent shear stresses, expressed as: 
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The turbulent viscosity is given by (7) and the simplification consists to assume a 
constant value of the diffusion parameter µC  instead of its functional expressions in the 

generic model (Zaouali, 2008; Zaouali et al., 2007). In fact, this would make the calculation 
more rapid. Because a refined turbulence model is not so essential for calculating the primary 
shear stresses, the approach of existing models is so adopted to determine these stresses with 
the aid of the isotropic eddy – viscosity hypothesis. 

 
The Reynolds stress model (5) to (11) was completed by transport equation of the 

TKE and the dissipation rate:  
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The dissipation production rate in the equation (13) was modeled following the 

standard formulation: 

P
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or following the alternative formulation of Zeman and Lumley (1976): 
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Boundary conditions 
 
At the walls, (bottom or lateral wall), the standard boundary conditions are applied 

for the longitudinal velocity and for the TKE and the dissipation rate at a distance nd  from 
the wall where the turbulence is developed: 
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The equation (15-a), where sK  is the roughness height, is valid for smooth, rough 

and intermediate regime. The wall boundary conditions for the stream function and the 
vorticity of the secondary flows, at the distance nd , are: 

 
0=ψ , 0=Ω                                    (15-c) 
At the symmetry axis of closed channel or at the free surface of open channel (z=h), 

the following boundary conditions were applied: 
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In the case of open channel flow it was observed that the boundary condition 
proposed by Naot and Rodi (1982) for the dissipation rate gives better results and so: 
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Where y * is the distance to the lateral wall. 
 
Numerical resolution  

 
                  Concerning the numerical resolution, because of symmetrical conditions (for the 
following application cases), the resolution is considered only on the half cross section of the 
channels. A uniformly distributed grid (leading to square cells) is used for the finite volume 
method employed. Test calculations were also carried out with tighter grid for each case, they 
yielded secondary velocities which differed by less than 5% from those obtained with the 
used coarser grid. The system was resolved by Stone’s iterative method, and the convergence 
was obtained after about thousand iterations. 

RESULTS AND DISCUSSIONS 
 

Application to parallel flow over smooth and rough wall in closed and open channel 
 

This model is first applied to simulate parallel, fully developed closed channel 
flows, and comparing them to result experiments of Comte-Bellot (1965) and Clark (1968). 
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These experiments were achieved in channels of large shape ratio; the values of the Reynolds 
numbers, based on the maximum velocity, are Re = 4.56 x 104 and Re = 5.7 x 104; in the two 
experiments the ratio of the friction velocity to the maximum velocity is the same, 

037.0U/u max
* = . In Fig.1, the profiles of longitudinal and vertical fluctuations, 2u  and 

2w , are plotted, normalized by the friction velocity u* in terms of h/z=ξ . The curves 
(pointed as Sim) represent the results of numerical simulations obtained with the turbulence 
model defined by equations (5) to (14), but with parallel flow assumption (V=W=0), and with 
the values of the constants indicated in Table 1.  
 

TABLE 1 
 

Values of the Model Constants 
 

  C1   C2   ′ c 1  ′ c 2   a   Cε1  Cε2  ck   cε 
1.8 0.6 0.5 0.3 3.18 1.44 1.92 0.22 0.18 

 

-In the wall region ( 2.0<ξ ), the component 22 *u/u  is slightly underpredicted. For the 
vertical component, in this zone, the simulations seem to reproduce better Comte Bellot 
results. 
-Out of this zone, the simulations reproduce acceptably the experimental results of the 

longitudinal component 22 *u/u  (Fig. 1a). It is also noted that for the vertical component 
the simulations join Comte-Bellot (1965) experiments (Fig. 1b). 
 

These simulations were obtained with 05.0C =µ . 

 

  
 
 

Figure 1. Longitudinal (a) and vertical (b) velocity fluctuations in closed channel flow. 
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Secondly  this model is applied to simulate also parallel fully developed flows, but 
in open channels over smooth bed (it's the experiments pointed out as runs P3 and P4 in Nezu 
and Rodi (1986), and over rough bed (it's the run E0 in Labiod and Masbernat (2004)). These 
experiments were achieved in channels of large shape ratio (2b/h>5) and the mean velocity 
and Reynolds tensor components profiles measured in the center of the channel were not 
affected by secondary flows; so the model was applied here too with parallel flow assumption 
(V=W=0). The normal components of the Reynolds tensor are plotted on Figure 2. 

 

  
 

Figure 2. Longitudinal (a) and vertical (b) velocity fluctuations in open channel flow. 
 

It is shown that these profiles of 22 u/u ∗ and 22 u/w ∗  obtained with 
05.0C =µ  are satisfactory predicted.  In fact, it is observed that this algebraic model 

predicts relatively well the increase and the diminution of these normal velocity fluctuations 
near the wall and near the free surface. 

Then this model is used to simulate non-parallel, fully developed flows in closed 
and open channel flows with different configurations of wall roughness.  

Application to square closed and open smooth channel 
 

Simulations of the flow in square corner are achieved and are compared with 
experimental results obtained: 
- In square closed channels, by Nezu and Nakagawa (1984), Lund (1977), Donald et al. 
(1984), Eppich (1982). 
- In open channels, by Nezu and Rodi (1985). 
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In Figures 3 and 4 the secondary flow field is compared in closed and open channel 
respectively. A good agreement is observed between experimental and theoretical results with 
an important difference between closed and open channel due to the damping effect of the 
free surface (as shown by the anisotropy profile in Fig. 5). In fact secondary flow patterns in 
ducts are symmetrical with regard to the corner bisector (Fig. 3), while those in open channels 
are not (Fig. 4). In the free – surface region a large cell appears, from the side wall toward the 
channel centre, and the down – flow along the channel centre from the free surface toward the 
bed, this is peculiar to open channel flows, as indicated by others. 

 

In Fig. 5, the simulation results of Demuren and Rodi (1984) achieved with a 
Reynolds stress transport model were also plotted.  

       
Figure 3. Secondary flow velocity in closed duct: 

(a) measured by Nezu and Nakagawa (1984); (b) present prediction. 

    
 Figure 4. Secondary-current in open channel: 

 (a) measured by Nezu and Rodi (1985); (b) present prediction.  
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In Fig. 6, it can be observed that the prediction of the wall shear stress is satisfactory 
for both closed and open channel. 

 
The longitudinal velocity profiles, normalised by the mean velocity plotted on 

Figure 7a show the simulations over predict slightly the velocity on the wall region. This 
agrees with the undervaluation of the wall friction in this zone (Fig. 6). While the vertical 
velocity component, normalised by the mean wall friction velocity (Fig. 7b), confirms these 
observations concerning the capability of this model to reproduce the secondary flow 
intensities. It is noted that the simulations results here coincide better with Brundett and 
Baines (1964) measurements. 
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Figure 5. Turbulence anisotropy in closed square duct (sim1)  
and open channel with 2B/h=2 (sim2). 

 
Application to Hinze experiment (1973) 

 

In this experiment achieved in a partially rough duct, Hinze measured the axial 
mean velocity field (Fig. 8), and the profiles, on the centreline of the duct, of the Reynolds 
shear stress (Fig. 10), and the vertical component of secondary flow (Fig. 9). It is noted that  
this simplified model gives as good a result as the more sophisticated models of Launder and 
Li (1994) or Naimi and Gessner (1997). 

In Figure 11, are presented the secondary flow patterns obtained from simulations of 
Muller and Studerus (1979) Experiment, achieved with the algebraic Reynolds stress model. 
Secondary flows are organized in two counter-rotating cells, oriented, near the wall, from the 
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rough strip towards the smooth strip, and their main characteristics are near to the 
experimental results.  

 

   
Figure 6. Distribution of bed shear stress bτ  for closed square duct (sim1)  

and open channel with 2B/h=2 (sim2). 
 

 
 
 

Figure 7. Vertical profiles: (a) longitudinal velocity on the duct midline;  
(b) Secondary flow velocity near the lateral wall. 
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Figure 8. Isovelocity streamlines in a partially rough duct; (a) Hinze’s experiment;  
(b) present simulation. 

 
 

 
Figure 9. Secondary flow velocity profiles 

on the duct midline. 
Figure 10. Turbulence shear stress profiles 

on the duct midline. 
 
 
Application to experiments of Muller & Studerus (1979), and Wang and Cheng (2006) in 
rectangular open channel, over smooth and rough bed strips 

 
In fact the maximum magnitude of the secondary velocity vectors is about 0.02 Um. 

On Figure 12, the effect of the sharp roughness change on the distribution of bτ was 

observed; a good agreement with Muller experiment for bτ measurements are available. 
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Figure 11. Secondary-current velocity vector over smooth and rough bed strips in 
rectangular open channel; (a) Muller and Studerus (1979); (b) present prediction. 

 
 
 

 
 

Figure 12. Distribution of bed shear stress τ  over smooth and rough bed strips in 
rectangular open channel. 

 

On Figure 13b, the vertical profiles of the vertical velocity │W│/Um are reported . 
It is observed that the simulations give intensities of │W│/Um  that are close at the verticals 
y = 0, 16 and 8 (Fig. 13b); while the measurements show profiles with higher intensities over 
rough zone (y = 8), than over smooth zone (y = 0 and 16). On Figure 13 a, the vertical 
simulated and measured profiles of the longitudinal velocity component are also compared . It 
is observed that the simulations reproduce the transversal velocity distribution, characterised 
by a more important mass flow rate in the channel center (rough zone), than over smooth 
zones.  
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Figure 13. Vertical profiles (a) longitudinal velocity; (b) Secondary flow velocity 

(Experiments of Muller and Studerus (1979)). 
 
The simulations of Wang and Cheng (2006) experiment reported on Figure 14 

confirmed the previous observations: well reproduction of the cellular organisation of the 
secondary flows, which are oriented from the rough zone towards the smooth one (Fig. 14a); 
and well prediction of the secondary flows intensity (the maximum magnitude of the 
secondary velocity vectors is about 0.025 Um). 

 

     
Figure 14. Secondary-current velocity vector and isovelocity streamlines of the vertical 

component: (a) measurement of Wang and Cheng (2006); (b) present prediction.  
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CONCLUSION 
 

In this study an algebraic stress model was applied to a variety of available 
laboratory experiments existing in literature. The analysis shows that this model allows to 
predict correctly the vertical profiles of the Reynolds stress tensor components, the local 
bottom friction, the primary isovelocity, and the secondary flow velocity. It is noted in 
particular that close to the wall, in the zone of roughness change (for the rough walls), the 
model confirms the role of the secondary flows on the turbulence intensity via the decrease of 
the turbulence production due to the decrease of the shear stress. It has to be noted that the 
model was applied only to laboratory experiments, and it will be interesting to test it for real 
cases. In prospect the simulation results of this model could be used to analyze the closure 
problem of Saint-Venant model, that is more adequate for the prediction of the flows in 
environmental situations; and then other experimental results will be tested to generalize and 
improve analisis of scale change problems in complex flows. 
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