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ABSTRACT 
 

This work presents a theoretical simulation of the dependencies of different physical 
parameters (internal energy, magnetization, specific heat, magnetic susceptibility and others) 
on the temperature for a two-dimensional Ising model and for different geometrical lattices 
(square, triangular, rhombohedral). These different geometrical lattices allow the 
determination of the dependency of the critical temperature on the coordination number 
(number of nearest neighbors). The linear behavior of the maximum values for the specific 
heat and for the magnetic susceptibility as a function of different geometrical lattice 
dimensions was obtained. 
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INTRODUCTION 

 
Nearly six decades ago, (Onsager, 1944) found an exact solution for an S=1/2 

square Ising lattice. The Ising model for magnetic materials had been developed by (Ising, 
1925). In this model, a phase transition at the critical temperature was found to be nonexistent 
for the one-dimensional lattice. 

 
The Monte Carlo method together with the Metropolis algorithm was recently used 

by (Fitzpatrick, 2002) in order to study the dependence of the different physical parameters on 
the temperature during a magnetic phase transition. The author considered a square lattice of 
sizes 5, 10, 20 and 40 and averaged the results over 4000 steps. Averages over 10000 steps on 
a square lattice of different dimensions were done by (Sun, 1999). Monte Carlo simulations 
on a 100x100 square lattice were also performed by (Chien, 1995). 
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  The work presented in this paper extends the Monte Carlo simulation of the Ising 
model using the Metropolis algorithm to the triangular and rhombohedral lattices. Due to the 
unavailability of large calculators, it was however restricted to an average over 250 steps. 
 

THEORY 
 

In order to calculate the different physical parameters, we use the Hamiltonian 
equation: 
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where iS  = ±1 and H is the external magnetic field. Using this equation, we calculate the 
internal energy of the system from which we derive the specific heat, which is proportional to 

the variance of the internal energy and to 1/T². The magnetization is written as ∑
i

iS  and 

the susceptibility is proportional to the variance of the magnetization and to 1/T. 
 

All these parameters depend on the absolute temperature T, and also on the 
dimension L of the lattice. Note that the properties of a three-dimensional lattice can be 
figured out numerically with a certain degree of accuracy but the exact solution, using known 
mathematical equations, has not yet been found. 

 
In order to calculate the physical parameters and simulate the general behavior of 

the lattice of spins, a sampling algorithm is needed. We use the Metropolis algorithm 
(Metropolis et al., 1953) that consists of flipping a spin and calculating the probability of 
accepting the new configuration, as 
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where iπ  is the probability of the system to be in the microstate i. 
 

The analytical expression of the internal energy and the magnetization for N spins 
are evaluated, for the square and triangular lattices, respectively as: 

 
Square lattice: 
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Triangular lattice: 
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−       (neglecting the integral)                 (5) 
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Whereas this simulation allows us to calculate the equilibrium physical properties as 

simple averages, it suffers from slowdown at the critical point. Algorithms that do not suffer 
from this slowdown are those that flip groups of lattice spins as a whole that is cluster 
algorithms (Swendsen &Wang, 1987). 

  
SIMULATIONS AND RESULTS 

 
To resolve the statistical problem of N spins in interaction on a two-dimensional 

lattice, the Metropolis algorithm was implemented for L*3 equilibrium steps (for L=4, 5, 10, 
13, 16, 32 and 40) and 250 iterations (each iteration includes a sweep through all spins), from 

which we extracted the averages , , ,vE M C χ  (internal energy, magnetization, specific 
heat, magnetic susceptibility) per spin respectively. These 250 iterations are repeated for 
different temperatures kT/J and applied to the square, triangular and rhombohedral lattices (4, 
6 and 2 nearest neighbors respectively). For L=40,  the curves corresponding to the square and 

triangular lattices are shown in Figure 1 (traced with error bars for ,| |E M ).  
 
The critical temperature CT  was extracted from the curves of the square and 

triangular lattices using the analytical expressions of the internal energy and the magnetization 
presented in the second paragraph (equations (3), (4), (5) and (6)) and the approximation 
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J/k=1. This CT  corresponds also to the maximum values of vC  and χ . These maximum 
values were deduced using an integral method. 
 

Analytical expressions were not found for the rhombohedral (or trigonal) lattice. 
Large errors were observed in the results for this lattice type especially at large dimensions; 
the magnetization was less than 1.0 at small temperatures and the width of the susceptibility 
and heat capacity peaks increased with the dimension L instead of decreasing. In addition, the 
number of fluctuations was large. This behavior was attributed to the small number of nearest 
neighbors (n=2) and to the distortion of the lattice at high temperatures. 

 
a) Square Lattice  
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b) Triangular Lattice  
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Figure 1. Variation of ,| |E M , vC  and χ /100 per spin as a function of the 

temperature for the a) Square lattice and b) Triangular lattice of dimension L=40. 
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Because of these errors at large L, the study of variation of the physical parameters 
as a function of kT/J was restricted to a lattice of dimension L=3 (this was done with 280 
steps and L*10 equilibrium steps); and  vC  was used to extract CT  for this lattice type. 

 

Using the results extracted from these three lattice types and using CT =1.52 for the 
honeycomb lattice characterized by three nearest neighbors per spin (Meyer, 1999), the 
critical temperature as a function of the number of nearest neighbors n was obtained (Figure 
2).  A linear fit for n=3, 4 and 6 gives: CT ~ (0.71 ± 0.01) n + (- 0.59 ± 0.04) 
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Figure 2. Variation of the critical temperature as a function of the number of nearest 

neighbors n for the square, triangular and honeycomb lattices. 
 
As for (n=2, 

CT =1.22), it is far from the linear fit as is shown in Figure 3. 

It is conclude that the linearity of CT (n) is only valid above a threshold value of n=2. 

The maximum values of vC  and χ at the critical temperature were obtained as a function of 

10log L  for the square and triangular lattices. The following results were found (Figures 4 
and 5): 
 
Square Lattice:  

maxvC ~ (1.31 ± 0.03) 10log L  or maxvC ~ )03.015.0( ±L  (the exact value being 

maxvC = / 0L Lα υ =  where α  and υ  are critical exponents) and maxχ ~ )02.056.1( ±L  (the  

exact result is maxχ =
/Lγ υ

= 75.1L ). 
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Figure 3. The critical temperatures corresponding to n=2,3 4 and 6 with a linear fit for 

the last three points. 
  
Triangular Lattice:  

maxvC ~ (1.36 ± 0.03) 10log L  and  maxχ ~ )01.037.1( ±L . A small deviation was observed 

in the result for maxvC . However one would expect the same result, due to the universality of 
the critical exponents. This discrepancy indicates that a larger number of Monte Carlo steps 
should be used for this lattice type. 

 
The results for different lattice types are summarized in the Table 1. 

 
TABLE 1 

 
Numerical Results and Comparison with Other Results 

 
Lattice type 

maxvC  maxχ  numerical results (7,9) 

Square 
maxvC ~ (1.31 ± 0.03) 10log L  maxχ ~ 

)02.056.1( ±L  

maxvC = 0L , maxχ = 1.75L  

Triangular 
maxvC ~ (1.36 ± 0.03) 10log L  

maxχ ~
)01.037.1( ±L  maxvC = 0L , maxχ = 1.75L  

Rhombohe- 
dral maxvC ~ (-0.33 ± 0.09) 

10log L +(0.47 ± 0.06) 
maxχ ~

)17.011.1( ±L  maxvC = 0L , maxχ = 1.75L  

Tc (n) 
CT ~ (0.71 ± 0.01) n + (- 0.59 ± 0.04) CT =0.7n-0.57 
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               a) Square lattice  
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               b) Triangular lattice  
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Figure 4. Variation of maxvC /N and 10log ( maxχ /N) as a function of 10log L  for the 
a) Square lattice and b) Triangular lattice. 

 
 

A comparison with the numerical results of reference (Fitzpatrick, 2002) shows a 
good compatibility with the linear relation of maxvC , as a function of 10log L. Also the critical 
temperatures extracted for the square and triangular lattices present relatively small errors by 
comparison with the analytical results of 2.27 and 3.64 respectively. As for the linear relation 
found describing the dependence of the critical temperature on the number of nearest 
neighbors (above a threshold of n=2), it compares well with that obtained by (Meyer, 1999). 

 
CONCLUSION 

 
This paper presents a study on the variation of different physical parameters with 

temperature and lattice dimension. The study reports a linear dependency of the critical 
temperature versus the number of coordination for a value of n greater than 2. This result 
provides a way to deduce the critical temperature knowing the geometrical structure of the 
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lattice. This work allows to deduce the critical exponents which are constants whatever the 
geometrical structure of the lattice (square, triangle and rhombohedral). It is shown that the 
maximum values of the specific heat and susceptibility are proportional to the dimension of 
the lattice. Thus, despite the fact that the simulations were restricted to 250 Monte Carlo 
steps, results were obtained that are compatible with those found numerically for a much 
larger number of steps. However the algorithm shows instability near the critical temperature 
where the dynamics is too slow, this instability explains the increasing deviation in the values 
of magnetic susceptibility and specific heat in comparison by numerical values (Meyer, 1999; 
Sun, 1999). This is mainly due to the restriction of the algorithm on the interaction of nearest 
neighbors (n=4 square, n=3 triangle, n=2 rhombohedral) as well as the dimension of the 
lattice. In fact more work is driven in order to improve the instability of the algorithm.  

 
This work can be further extended to the study of antiferromagnetic materials and 

the magnetisation of ferromagnetic nanoparticles characterised by uniaxial anisotropy. 
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