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ABSTRACT 
 

In this paper we demonstrate the equality between two tranfer functions  via the 
application of different approaches. The first approach consists of using  the  optimal  control  
theory  problem; whereas the second consists of using the regularization method. The latter 
approach leads to a structure identical to Wiener filter.  Both approaches are then 
investigated in the scalar  and matricial cases for single-input single-output Systems (SISO). 
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 INTRODUCTION 
 

The input - output relation for SISO linear systems is given by the convolution 
product as follows : 

y(t)=h(t)*u(t) 
 
 

ym(t)=y(t)+v(t) 
 
where * denotes the deconvolution, h(t) is the process impulse response, u(t) is the input 
signal, v(t) is the noise measurement and ym(t) is the recorded data. 
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The input estimation termed as deconvolution for linear stationary systems is 
known to be an ill-posed problem (Tikhonov and Arsenin, 1977). As a matter of fact, singular 
values in the spectrum of h(t) disables a stable direct estimation of u(t) since ym(t) is a noisy 
signal. 

 
Solutions to this inconvenience lead mostly to stable pseudo-inverse solutions of 

h(t). Intuitive iterative (van Cittert, 1931), probabilistic (Demoment, 1989) and regularization 
(Miller, 1970; Tikhonov and Arsenin, 1977) techniques have been proposed to tackle this 
problem. Among these approaches, the regularized inverse filter is one of the most popular. 
Recent works have lead to optimal control based estimation algorithms (Thomas, 1980; 
Sekko, 1996). 
 

In the present paper, equivalence between regularization technique and optimal 
control is proved. In Section 2, the regularization technique is delineated. The optimal 
tracking control deconvolution is developed in Section 3. The duality of both methods is 
proved in Section 4. Two simple examples are given in Section 5 in order to illustrate the 
equivalence. Finally, concluding remarks are given in Section 6. 
 
Regularized deconvolution method 
 

System impulse response spectrum gives rise to singular values precluding direct  
model inversion. In order to avoid this drawback, Philips (1962), Tikhonov and Arsenin 
(1977) and Twomey (1963) have considered the input estimate ûα to be the minimum of the 
following criterion : 

J y h u
d
dt

um i

i

i
i

1

2
2

= − + ∑* α  

with αi∈ℜ
+ the regularization parameters. 

 
It can be clearly seen that J1 reduces to the Least Square Estimation criterion if all 

regularization parameters are set to zero. 
 
The first term of this criterion represents fidelity of the data. Concerning the second 

term, two cases are generally considered : 
 

                                 only α0≠0 : large values of ûα are penalized ; 
only α1≠0 : a smoothing constraint is imposed to ûα. 

 
In both cases, as αi decreases to zero, the ill-conditioning amount in the method 

increases. 
 
In the following, the first case will be considered and the estimate will be the 

minimum of : 
22

2 * uruhyJ m +−=  

r =α0
2 
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Theorem 1 
 

The optimal deconvolution filter minimizing J2 such as : 
 

Ûα(s)=Fr(s) Ym(s) 
is given by : 

rsHsH
sHsFr +−

−
=

)()(
)()(  

with Ûα(s), Ym(s) the Laplace transform of ûα(t) and ym(t) respectively.  
 
Proof 
 

Our aim is to find an optimal estimation of the signal u(t) minimizing the following 
criterion  

 
where 
 

 
therefore 
 

{ }dtturduthtyuJ m .)(.))().()(()( 22
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using the fundamental theorem of variational calculus, taking  u = û+∆ u  we can write : 
 
and finally 
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 knowing that J(û+∆u) is under the classical form : 
 

where 

or 

where δ is the Dirac function , this will lead us to write : 

therefore 
 

 

with Fubbuni theorem, we write : 

∫
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using the known following result : 
 

 
  ∀  δh  ⇒  f = 0   ∀ t ∈ [ t1    t2]  
 
We have 
 

 

 
Which can be written in the following form : 
 

 
 
As : 
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we reach the following equation 
 

for physically realizable signals 
 

 
In the Fourier space, we have : 
 

 
And finally we obtain 
 

 
Remark 1 
 
The Wiener inverse filter is given by (Wiener, 1949) : 
 

u

v
w

S
SsHsH

sHsF
+−

−
=

)()(

)()(  

where Sv and Su are respectively the Power Density Spectrum of v(t) and u(t). 
 

In order to estimate u(t), assumptions should be made on the spectrum of u(t). If one 
defines Su such that Su=Sv/α0

2 then regularization and Wiener methods are equivalent.  
 
Deconvolution through optimal tracking control 
 

Optimal tracking control is used in order to apply to the most suitable control a 
system in order to get the desired output trajectory. Applied to deconvolution, this trajectory 
can be considered as the measured signal as shown in Figure 2. 
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Consequently, our aim is to find the optimal control such that : 

( )J e Qe u Ru dt
T

3
0

= +∫ ' '  

with Q a semi-definite positive matrix of real elements, R a positive scalar and e’ the 
transpose of e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Optimal tracking control deconvolution scheme. 

 
Theorem 2 : Non-stationary deconvolution 
 

The optimal tracking control minimizing J3 is given by (Thomas, 1980): 
with matrices A∈ℜnxn, B∈ℜnx1 and C1xn∈ℜ defined as : 
 

                                             
~& ( ) ~( ) $ ( )
~( ) ~( )
x t Ax t Bu t
y t Cx t

oc= +
=

                                                  (1)  

   
Let e(t) be the tracking error  
 

 
Where  ym(t) is the recorded signal, and  y(t) the output of the system model whose input is 
û(t). To estimate the quality of the approximation, we define a performance criterion  J3. 
 

It can be shown that the optimal control is given by : 

Process 
h(t) 

Model 
h(t) 

Optimization 
Procedure 

u(t) 

ûoc(t) 

ym(t)

v(t) 

y(t) ~

e(t) 

Σ 

+

-
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                                                                                                                                                 (2) 
Where the matrix K is the solution of the Riccati equation : 

 
v is the adjoint vector, solution with n components, of the equation : 

 
with the initial condition v(T)=0. 
 
Remark 2 
 

In the stationary case, one sets dK(t)/dt to zero and solves (3) as an algebraic Riccati 
Equation. 
 
Equivalence between regularization and optimal tracking control approach 
 

The two methods presented in the previous Sections have been developed in two 
different approaches. As a matter of fact, the inverse regularized filter is obtained in the 
Laplace domain whereas the optimal control is expressed in the time domain. In order to 
prove the equivalence of the two methods, the stationary optimal control with Q=Inxn and 
R=α0

2 will be considered. 
 

Consequently, the equivalence will be established considering the transfer function 
between the output of the model driven by the estimate, and the measured signal (see figure 
3). Equality of the transfer functions will entail the equality of the estimate and ym(t) for both 
methods. 
 
Theorem 3 
 

The stationary optimal tracking control deconvolution (presented in Theorem 2 and 
Remark 2, with Q=Inxn and R=α0

2) ; and the regularized inverse technique  (in Theorem 1) are 
equivalent. 
 
 
  
 
 
 
 
 
 
 

Figure 3. 
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Proof 
 
• The first Step of the proof : 
 
a-The scalar case with optimal control 
 
Let’s take under consideration the following scalar system : 

Where a, b, and c are scalars. 
The optimal control is given by : 

 
then (3) becomes 

 
and  (4) is written as 

 
with q=1, we obtain : 
 

in Fourier space, we write : 

 
where X and V are the Fourier transforms of x and v. Then we obtain with (1) 

 
using (6), in Fourier space, we have : 
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introducing (9) in (8) we get : 
 

 
and using (7) we can write : 
 

 
 

 
and finally 

 
 
b-The scalar case with the regularization  method 
 
The Fourier transform (1) is : 
 

The corresponding transfer function is given by : 
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Introducing (11) in (12), the transfer function from  Ym  to  Y  becomes : 

 
It is straight forward to see that in both approaches (regularization method (13) and optimal 
control (10)) the transfer function from Y to Ym is the same. 
 
 
• The second step of the proof : 
 
a-The matricial case with optimal control 
 
Applying (2) to (1) the state space equation (1) becomes : 

 
 
In Fourier space, we write : 

 
Where X, K and V are the Fourier transforms of x, k and v, then we obtain with(1) 
 

using (4), in Fourier space 
 
 

(14) becomes 
 

  
Developing  the following term 

 
with BR-1Bt=E  we find 
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then it may be written as: 

using (3) and with BR-1Bt=E  
 
 

(16) becomes 
 

 
 
 
and we can write : 
 

then 

 
where 

 
It becomes 
 

 
Then we obtain (15) as follows 
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If we put 

 
we can write the transfer between Ym and Y as follows : 

here  Q=I (I denotes the identity matrix) 
 
 
b-The matricial case with regularization method 
 
The Fourier transform (1) is : 

and  

we can write : 

 
 
U represents the Fourier  transform of  u. We write the transfer between Y and Ym under the 
form : 

 
Considering 

 
we can write : 

 
We can verify that (GCt - R) is a scalar, consequently we can write : 
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Now, the problem is to prove the equality between (18) and (19). 
 
 
Let : 

 
 
 

 
Since the term (GCt - R) is a scalar then 
 

 
 
 
Remark 3 
 

From definition of J2 and J3, it is straightforward to see that considering Q=Inxn and 
R=α0

2 in J3 yields J3=J2. Consequently, the duality of both methods in this context could be 
intuitively expected.  
 
 
5. Examples 
 
 

In the present section two examples are given in order to illustrate the equivalence 
between the first approach (regularization case) and the second approach (optimal control 
case).  
 
 
      ym                                 û                         y                 ym                                           û                                   y          
                                                                                                                                                                  
 
         
       
 
 
 

Figure 3.1. Regularization technique.                            Figure 3.2. Optimal control. 
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Figure 4.1. Restoration with regularization 
technique. 

 

 
 
 

Figure 4.2: Restoration with optimal  control 
(r =10- 4 ) 

     --- Original signal 
          Restored signal      ---  Original signal  

   Restored signal 
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CONCLUSION 
 

In the signal processing domain, the deconvolution problem is usually tackled 
through probabilistic consideration or through regularization. Recent works related to 
deconvolution have been developed using optimal control theory results. Considering a 
particular case of the latter approach, we can intuitively consider that regularization and non-
stationary optimal control based on deconvolution are equivalent. In the present paper, the 
intuitive idea is proved to be mathematically true. The developed examples illustrate clearly 
the equality of both methods. 
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