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ABSTRACT 

 

Fadel, A., Faour, G. and Slim K. 2016. Assessment of the trophic state and chlorophyll-a 

concentrations using Landsat OLI in Karaoun reservoir, Lebanon. Lebanese Science 

Journal, 17(2): 130-145. 
 

Harmful algal blooms have become a worldwide environmental problem. A regular 

and cost-effective monitoring of these blooms is highly needed by lakes managers. Satellite 

remote sensing imagery like Landsat Operational Land Imager (OLI) can be used to assess 

and monitor chlorophyll-a in water bodies over large areas in a cost-effective way. In this 

study, the accuracy of Landsat OLI to estimate chlorophyll-a was examined. Four field 

campaigns and cloud free images of Landsat OLI with 30 m resolution (01 May 2013, 21 

August 2013, 10 July 2015, and 11 August 2015) were used in this study to determine the 

accuracy of Landsat OLI in estimating chlorophyll-a in a 12 km2 freshwater body, Karaoun 

reservoir. After atmospheric correction of these images, reflectance of single and multiple 

band combinations were compared to field chlorophyll-a data. Results of field campaigns 

showed that the trophic state of Karaoun reservoir is still eutrophic to hypereutrophic with 

high nutrient concentration and low phytoplankton biodiversity, dominated by cyanobacteria 

species, Microcystis aeruginosa and Aphanizomenon ovalisporum. On single band level, the 

in situ chlorophyll-a measurement correlated best with band 5 (0.85 - 0.88 µm), with R=0.75 

and R2=0.57. Highest correlation (R=0.84 and R2=0.72) was obtained using band 

combination, B2:B4 band ratio multiplied by B5. Results indicated that Landsat OLI can be 

used effectively to determine chlorophyll-a concentration in lakes and reservoirs. We 

recommend the application of Landsat OLI as a satisfactory and cost effective method for 

monitoring chlorophyll-a in other lakes through-out the world.  
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INTRODUCTION 

 

Lakes and reservoirs are valuable resources that meet human needs for drinking 

water supply, agricultural irrigation, power generation, industrial use, commercial fishing and 

recreational activities. Fertilizers and untreated sewage in the catchments of reservoirs pollute 

these ecosystems by increasing nutrient concentrations and result in their eutrophication 

(Smith & Schindler, 2009). Eutrophication threatens freshwater bodies as it promotes the 

development and the persistence of harmful algal blooms. These blooms reduce the ecosystem 

biodiversity and can produce toxins (Brient et al., 2009). These toxins has various impact 

ranging from skin irritation upon contact to intoxication and death when ingested (Nyakairu et 

al., 2010; Azevedo et al., 2002).  

 

In the European Union, the phytoplankton community is used as a biological 

indicator of the quality and ecological status of water bodies monitored in accordance with the 

Water Framework Directive (European Parliament Council, 2000). In addition, the World 

Health Organization (WHO) has established guideline values for drinking-water supplies and 

recreational waters which may contain harmful algal blooms (Chorus, 2005). 

 

Chlorophyll is the pigment used to asses algal blooms. It can be measured by 

traditional in situ sampling methods coupled with laboratory measurements and analyses. 

However, these methods are often limited in both time and space, and are expensive and time 

consuming. Remote sensing can be a key tool for assessing and monitoring chlorophyll in 

water bodies as it allows frequent surveys over large areas in a cost-effective way. Many 

studies have affirmed temporal and spatial advantages of remote sensing techniques in 

monitoring and assessing over traditional monitoring methods (Kabenge et al., 2016; Song et 

al., 2013; Wu et al., 2013). 

 

Most of the high spatial resolution space-borne missions are devoted to land 

applications, lacking appropriate wavelengths or bandwidths for water purposes. SeaWiFS, 

MODIS and MERIS are some of space-borne missions that have been used for quantitative 

monitoring of chlorophyll-a concentration (Bresciani et al., 2013). They are known for their 

precision because of their high spectral resolution (King et al., 1992; Rast et al., 1999). 

However, the applications of those sensors were restricted to the open ocean case 1 waters 

whose optical properties are determined primarily by phytoplankton and related colored 

dissolved organic matter (CDOM) and detritus degradation products. This cannot satisfy the 

needs of monitoring the water quality in coastal case 2 waters or inland waters, whose optical 

properties are significantly influenced by other constituents such as mineral particles, CDOM, 

or microbubbles, whose concentrations do not co-vary with the phytoplankton concentration 

(Gerace & Schott, 2009; Odermatt et al., 2010). They cannot show the detailed spatial pattern 

at sub-mesoscale due to their low spatial resolution, therefore their usefulness for small to 

medium-size lakes has been limited (Wu et al., 2008). 

 

Landsat missions provide high spatial resolution with lower spectral resolution. 

Landsat 8 OLI has been lunched in 11 February 2013. It has more advantage on the 

previously launched Landsat-7 TM after the use of push-broom scanner and the addition of 

two new spectral bands, band 1 for coastal water and aerosol, and band 9 for cirrus cloud 

detection to its OLI sensor (Irons et al., 2012; Li et al., 2013).  
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The high spatial resolution and the added bands of Landsat 8 OLI sensor has offered 

a great promise for case 2 water status quality monitoring (Gerace & Schott, 2009). Up to our 

knowledge little or no studies have been performed to determine the accuracy of Landsat OLI 

in estimating water quality parameters, particularly chlorophyll-a. Some studies have been 

conducted using the Landsat 7 TM that has fewer bands and uses whisk-broom scanner, but 

most of these study were limited to a narrow range of chlorophyll-a concentration, often less 

than 50 µg.L-1. This study, 1) examines the accuracy of Landsat OLI estimating chlorophyll-a 

over a wide range of concentrations, 2) assesses the spatial distribution of chlorophyll-a, and 3) 

determines the trophic state of Karaoun reservoir in summer 2015.  

 

MATERIALS AND METHODS 

 

Study site  

 

Karaoun reservoir, also known as Qaroun, Qaraoun or Qarun, located in the 

southern part of the Bekaa valley, between the two Lebanese mountain chains, is the largest 

freshwater body in Lebanon (Figure 1). It has a surface area of 12 km2, maximum depth of 60 

m and a maximum volume of 224 x 106 m3. The reservoir was constructed between 1958 and 

1965 on the Litani River (170 km length) for power production and irrigation. The river 

inflow occurs mainly in the wet season, from October to April, while the withdrawals are 

much more regular in the year, which causes a large water level variation in the year, and can 

reach up to 30 m (Fadel et al., 2015). No spatial measurements of chlorophyll-a or remote 

sensing studies on the water quality were conducted before on this reservoir. Studies have 

been carried out in Karaoun reservoir on toxins and metal and nutrient concentrations (Korfali 

& Jurdi, 2010), and its phytoplankton community. The reservoir water was fit for 

multipurpose uses, like drinking, domestic, recreational activities, irrigation, fisheries before 

2000. Cylindrospermopsin, a cyanobacterial toxin was then detected in 2012 in the reservoir 

(Fadel et al., 2014a). Irrigation by water contaminated with this toxin affects the growth and 

productivity of seedlings like cucumber and tomato (Temsah et al., 2016). Recent climatic 

fluctuations and temperature increase have upset the biodiversity of Karaoun reservoir, 

resulting in blooms Microcystis aeruginosa and Aphanizomenon ovalisporum (Slim et al., 

2014). 

 
Figure 1. Sampling points at Karaoun reservoir. 
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Field sampling 

 
Four field campaigns were conducted in this study (Figure 1). One campaign (26 

April 2013, n=3) was performed four days before the Landsat 8 overpass while the other three 

campaigns 21 August 2013 (n=3), 10 July 2015 (n=15), and 11 August 2015 (n=8), were 

performed during the Landsat 8 overpass. According to Krizanich and Finn 2009, field data 

collected on the same day as the satellite overpass result in the best regression results 

(Krizanich & Finn, 2009). However, field data collected from 1 to 7 days off the satellite 

overpass date can still be used but can result in a decreasing strength of correlation (Chipman 

et al., 2004; Kloiber et al., 2002). 

 

Water samples were collected at subsurface, at different locations throughout the 

reservoir (Figure 1). The position of the sampling boat was geolocated by a portable global 

positioning system (GPS). Samples were stored at 4°C until further processing in the 

laboratory. Subsamples were used for phytoplankton identification, turbidity analysis and 

chlorophyll-a quantification. 

 

Laboratory analysis 

 

The phytoplankton species were identified on the sampling day according to 

taxonomic keys based on cell structure and dimensions, colony morphology, and mucilage 

characteristics (Komárek & Anagnostidis, 2005; 1999). Microscopic identifications were 

carried out under a phase contrast microscope (Nikon TE200, Nikon, Melville, New York, 

USA). 

 

Chlorophyll-a quantification, used to estimate total phytoplankton biomass, was 

carried out according to Lorenzen method (Lorenzen, 1967). A duplicate of each sample was 

filtered using Whatman GF/C filters that were then kept frozen at -20 ºC for 16 h. 

Chlorophyll-a was extracted from these filters in 90 % acetone by ultrasonication and 

agitation. The extracts were centrifuged at 3500 rpm for 10 min to reduce the turbidity. About 

2 mL were used for chlorophyll-a quantification by spectrophotometry, then a correction was 

performed by adding 60 µL of 0.1 M HCl to these 2 mL to measure the amount of 

chlorophyll-a degradation product, pheophytin-a. 

 

Turbidity was only measured on 10 July and 11 August 2015 using a turbidity meter 

(ORION AQ3010, Thermo Scientific). 

 

Estimation of trophic state index 

 

To classify the evolution of trophic state of Karaoun Reservoir between 2013 and 

2015, we applied Carlson’s Trophic State Index (CTSI) that was calculated based on 

chlorophyll-a concentration (in mg.m-3), according to the following equation (Carlson, 1977): 

 

TSI(Chl-a) = 9.8 ln Chl-a + 30.6 

 

Based on the values of CTSI (Carlson, 1977; Sheela et al., 2011) freshwater bodies 

are classified as oligotrophic (CTSI less than 40), mesotrophic (CTSI between 40 and 50), 

eutrophic (CTSI between 50 and 70) or hypereutrophic (CTSI greater than 70). 
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Landsat OLI data 

 

The Landsat Data Continuity Mission’s (LDCM), Landsat 8, launched on February 

11, 2013, uses two sensor payload, the Operational Land Imager (OLI) and the Thermal 

InfraRed Sensor (TIRS) [refer to Iron et al., 2012 or to Roy et al., 2014]. It collects images of 

the entire earth every 16 days in an 8 days offset the Landsat-7. Landsat 8 Operational Land 

Imager (OLI) and Thermal Infrared Sensor (TIRS) images consist of nine spectral bands with 

a spatial resolution of 30 meters for Bands 1 to 7 and 9. New band 1 (ultra-blue) is useful for 

coastal and aerosol studies (TABLE 1). Bands 6 and 7 (SWIR 1 and 2) cover different slices 

of the shortwave infrared, SWIR. They are particularly useful to discriminate moisture 

content of soil and vegetation. New band 9 is useful for cirrus cloud detection. The resolution 

for Band 8 (panchromatic) is 15 meters. Thermal bands 10 and 11 with a spatial resolution of 

100 meters, are useful in providing more accurate surface temperatures (Loveland & Dwyer, 

2012). Approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 

mi). The OLI sensor has nine spectral bands between 0.43 µm to 1.38 µm, consisting of seven 

multispectral bands, a panchromatic band and a cirrus band. The OLI multispectral bands 

have more advantage on Landsat-7 TM after the addition of two new spectral bands, band 1 

for coastal water and aerosol, and band 9 for cirrus cloud detection. 

  

Four cloud free images of path 174 and raw 37 are used in this study. These images 

were downloaded freely from the USGS website http://earthexplorer.usgs.gov/. They are 

Level 1T processed, meaning that they have undergone systematic terrain calibration and 

geometric calibration. However, they need radiometric calibration and atmospheric correction 

to achieve the purpose of chlorophyll-a concentration retrieval. Those two procedures are 

conducted by the ENVI software in this work. Radiometric calibration was performed on all 

image data used in this work as recommended by the USGS website. An atmospherically 

correction was then done using the widely used method, FLAASH (Fast Line-of-sight 

Atmospheric Analysis of Hypercubes) provided by ENVI (Exelis, Boulder, CO), as shown in  

Figure 2 (Nazeer et al., 2014; Souza Jr. et al., 2013; Vibhute et al., 2015). 

 

TABLE 1  

 

OLI and TIRS Specifications 

 

Bands Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 
100 m resampled to 

30 m 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 
100 m resampled to 

30 m 

http://earthexplorer.usgs.gov/
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Figure 2. Image processing: radiometric calibration and atmospheric correction. 

 

Results and Discussion 

 

Main identified species and in-situ chlorophyll-a  

 

The phytoplankton community identified in the different sampling dates used in this 

study was dominated by two cyanobacteria species (TABLE 2). As an overall, three 

phytoplankton groups were identified: diatoms (Aulacoseira granulate and Melosira varians), 

green algae (Botryococcus braunii, Volvox aureus, Pediastrum duplex, Staurastrum 

manfeldtii, Dictyosphaerium pulchellum, and Coelastrum microporum) and cyanobacteria 

(Microcystis aeruginosa, Anabaena circinalis and Aphanizomenon ovalisporum).   

 

As indicated in previous studies (Slim et al., 2014), Microcystis aeruginosa and 

Aphanizomenon ovalisporum are still the main blooming cyanobacterial species in the 

reservoir. The succession of these toxic species is comparable to the year 2012 as reported by 

(Fadel et al. 2014b), with Aphanizomenon ovalisporum bloom at late Spring followed by a 

bloom of Microcystis aeruginosa in Summer. The biodiversity of phytoplankton community 

is very low in the reservoir that is often dominated by one genus of cyanobacteria group 

(TABLE 2). 

 

TABLE 2 

 

Species Identified under the Microscope in the Subsurface Samples Taken at the 4 

Sampling Dates Used in this Study 

 

26 April 2013 21 August 2013 10 July 2015 11 August 2015 

Botryococcus braunii 

Volvox aureus 

Coelastrum microporum 

Aulacoseira granulate 

Melosira varians 

Microcystis 

aeruginosa 

 

Aphanizomenon 

ovalisporum 

Microcystis 

aeruginosa 
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Chlorophyll-a concentrations measured during the four sampling dates was wide in 

range, between 40 and 430 mg.m-3  (Figure 3). Highest spatial variation of chlorophyll-a 

occurred in 10 July 2015 during a bloom event of cyanobacterium Aphanizomenon 

ovalisporum. This signifies that the use of a single station to monitor in situ chlorophyll-a at 

Karaoun reservoir is not sufficient in some bloom events as it may overestimate or 

underestimate chlorophyll-a concentrations when compared to chlorophyll-a averaged over 

the reservoir area. Based on previous studies on Karaoun Reservoir (Slim et al. 2014; Fadel et 

al. 2015), it is thought that low or no precipitation between May and October, in combination 

with decrease in water-level, thermal stratification, high nutrient concentrations, and 

cyanotoxin production results in a low biodiversity of the phytoplankton community in 

Karaoun reservoir. 

 

Figure 3. Chlorophyll-a concentrations measured during 26 April 2013, 20 Aug 2013, 10 

July 2015 and 11 August 2015.  

 

Turbidity measured during 10 July and 11 August 2015 ranged between 10 and 176 

NTU. It was highly correlated with chlorophyll-a measurements, with R2=0.94 for wide range 

of chlorophyll-a concentrations, 36-423 mg.m-3 (Figure 4). This signifies that phytoplankton 

community might be the major contributor to turbidity in the reservoir. Lower correlation of 

R2=0.75 was found for lower range of chlorophyll-a concentrations, 36-153 mg.m-3 (Figure4). 

Karaoun Reservoir is a monomictic water body that strongly stratifies between May and 

August (Fadel et al., 2015). This prevents the resuspension of bottom sediment and the 

physical-chemical exchanges between the different layers of the water columns. Mixing of 

water occurs in fall or early winter when T of surface water lowers downs to become 

equivalent to the bottom water. No mixing is induced by the river inflow to the reservoir, 

because inflow rate is negligible between May and August each year due to no precipitation 

events (Assaf & Saadeh, 2008).  
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Figure 4. Correlation between chlorophyll-a and turbidity measurements during 10 July 

and 11 August 2015.  a) high range of chlorophyll-a concentration, up to 480 mg.m-3 (n = 

23) and b) lower range of chlorophyll-a concentration, up to 180 mg.m-3 (n =15). 

 

Trophic state in summer 2015 

 

The Carlson trophic state index of Karaoun reservoir during the 4 sampling dates in 

2013 and 2015 is presented in Figure 5. CTSI ranged between 66 and 84. In 2013 the CTSI 

was less than 70, classifying the reservoir as eutrophic. The CTSI was much higher in 2015, 

above 70, classifying the reservoir as hypereutrophic. Previous studies performed on the 

reservoir in 2004, 2005 and 2010 classified the reservoir as eutrophic to hypereutrophic. Our 

results for 2013 and 2015 show that the reservoir trophic state has not improved during the 

last ten years (Figure 5).  
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The agricultural activities and untreated industrial and municipal waste waters, 

increased number of inhabitants after the construction of several refugee camps and solid and 

liquid wastes dumped into the Litani River, pollute and deteriorate the water quality of 

Karaoun reservoir and increase its trophic state (Fadel, et al., 2014b). Reservoir managers in 

Karaoun reservoir should take actions that reduce the nutrient influx to the reservoir to 

improve its trophic state. 

 

 
Figure 5. Trophic state index, based on average chlorophyll-a concentration measured 

during the four campaigns. 

 

Comparison to Landsat OLI data 

 

Linear regression relationships between in situ chlorophyll-a concentration and 

Landsat OLI bands 1-5 was performed in order to determine which Landsat single bands can 

be used to estimate chlorophyll-a concentration in Karaoun reservoir. On single band level, 

the in situ chlorophyll-a measurement correlated best with band 5, with R=0.75 and R2=0.57 

(Table 3). The lowest correlation, R=0.08 and R2=0.01 was with band 4. 

 

Previous investigations (Brezonik et al., 2005; Duan et al., 2007) suggested that 

band combinations including ratios, multiplication and/or average might provide useful 

relationships to estimate chlorophyll-a concentration in inland waters. Many tested band 

combinations showed good correlation with in situ chlorophyll-a measurements. However, the 

best band combination with R=0.85 and R2=0.72 was obtained for B2:B4 band ratio 

multiplied with B5 (TABLE 3; Figure 6). 
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TABLE 3  

 

Linear Regression Relationships between In Situ Chlorophyll-a and Landsat OLI Bands 

(n=29) 

 

Bands R R2 Bands R R2 

B1 0.34 0.11 B5/B1 0.67 0.45 

B2 0.32 0.1 B5/B2 0.52 0.27 

B3 0.12 0.015 B5/B3 0.68 0.46 

B4 0.08 0.01 B5/B4 0.67 0.44 

B5 0.75 0.57 B1/B2*B5 0.76 0.58 

B1*B2 0.33 0.11 B1/B3*B5 0.83 0.68 

B1*B3 0.22 0.05 B1/B4*B5 0.84 0.71 

B1*B4 0.16 0.02 B1/B5*B5 0.34 0.11 

B1*B5 0.77 0.58 B2/B1*B5 0.69 0.47 

B2*B3 0.18 0.03 B2/B3*B5 0.82 0.66 

B2*B4 0.13 0.02 B2/B4*B5 0.84 0.72 

B2*B5 0.71 0.5 B2/B5*B5 0.32 0.1 

B3*B4 -0.01 0.01 B3/B1*B5 0.48 0.23 

B3*B5 0.51 0.29 B3/B2*B5 0.55 0.3 

B4*B5 0.52 0.27 B3/B4*B5 0.77 0.6 

B1*B2*B5 0.7 0.48 B3/B5*B5 0.12 0.01 

B1*B3*B5 0.58 0.33 Average (B1;B2) 0.33 0.11 

B1*B4*B5 0.55 0.3 Average (B1;B3) 0.19 0.03 

B2*B3*B5 0.51 0.25 Average (B1;B4) 0.18 0.03 

B2*B4*B5 0.49 0.24 Average (B1;B5) 0.71 0.5 

B3*B4*B5 0.2 0.08 Average (B2;B3) 0.19 0.04 

B1/B2 -0.22 0.05 Average (B2;B4) 0.19 0.03 

B1/B3 -0.03 0.01 Average (B2;B5) 0.67 0.45 

B1/B4 -0.06 0.01 Average (B3;B4) 0.11 0.01 

B1/B5 -0.55 0.3 Average (B3;B5) 0.45 0.2 

B2/B1 0.2 0.04 Average (B4;B5) 0.52 0.27 

B2/B3 0.27 0.07 Average(B1;B2;B5) 0.62 0.39 

B2/B4 0.32 0.1 Average (B1; B5)+ 

Average (B2;B5) 

0.69 0.47 

B2/B5 -0.51 0.26 Average (B2;B5) - B1 0.67 0.45 

B3/B1 -0.13 0.11 Average (B1;B5) - B2 0.68 0.46 

B3/B2 -0.27 0.15 Average (B1;B5)+B1 0.58 0.35 

B3/B4 -0.07 0.03 Average (B2;B5)+B1 0.58 0.34 

B3/B5 -0.53 0.17 2*Average (B2;B5)-B1 0.71 0.5 

B4/B1 -0.11 0.01 2*Average (B1;B2)-B5 0.47 0.22 

B4/B2 -0.32 0.1    

B4/B3 0.01 0.01    

B4/B5 -0.6 0.36    
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Figure 6. Correlation between In Situ chlorophyll-a and best band combination, 

B2/B4*B5, n=29. 

 

The algorithm obtained between measured chlorophyll-a and the best band 

combination is shown in equation 1. This algorithm was applied to 1 May 2013 and 10 July 

2015 to examine its precision in estimating chlorophyll-a throughout the reservoir. It was able 

to estimate the low concentration and homogenous distribution of chlorophyll-a during 1 May 

2013 (Figure 7a and b). The algorithm also estimated correctly the high and heterogeneous 

distribution of chlorophyll-a during 10 July 2015 (Figure 7c and d).  

 

 

 

                    Equation 1: 

 

Few studies were conducted on Landsat 8 that was launched recently, in 2013. 

Manzo et al. (2015), tried to describe the spectral sensitivity of the new remote sensing 

sensors, Landsat 8 to chlorophyll-a using the water reflectance simulated by analytical 

modelling. Their sensitivity results showed the effectiveness of Landsat 8 in chlorophyll-a 

analysis in meso-eutrophic and oligotrophic status. 

 

Landsat OLI broad bands can make it difficult to spectrally resolve the prominent 

spectral features of water quality parameters as chlorophyll-a because it does not have a 

narrow band to target optical features associated with water quality parameters. However, 

Landsat bands may be correlated with chlorophyll-a through the total absorption and 

scattering properties (Kutser, 2009). The chlorophyll fluorescence peak at 683 nm is a special 

characteristic of harmful algal blooms which can be used to effectively separate it from other 

types of water (Shen et al., 2012). However, the chlorophyll-a absorption at red region of 670 

nm is not totally presented in the OLI band 4. The peak is also present around 700 nm and is 

totally out of the OLI bands (Table 1). Oki (2010) found that the chlorophyll-a concentration 

could be accurately estimated by using the ratio of spectral radiance reflectance of the red 

light region around 675 nm as the denominator and a near infrared region within the range of 

700 nm through 730 nm as the numerator. This agrees with the algorithm we found, where the 

near infrared band 5 is a numerator and red light region band 4 is a denominator. 
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Figure 7. Comparison between estimated (a, c) and measured (b, d) chlorophyll in 1 

May 2013 and 10 July 2015, respectively. 

 

The reflectance peak varies according to the phytoplankton species. Not all 

phytoplankton species has their reflectance peak at 700 nm. Some species has double peak 

rather than one single peak around 680–750 nm. Other species have a wide peak from 680 to 

900 nm (Shen et al., 2012). Spectral reflectance and absorption bands of Microcystis can be 

beyond 750 nm. Maruthi Sridhar and Vincent (2007) found that Microcystis bloom in lake 

water had a minor absorption around 765 nm with a reflectance plateau of 780–810 nm in the 

near-infrared region. This reflectance gradually decreases from 810–1,000 nm. This may 

explain why the OLI band 5 correlated the most with the phytoplankton biomass in our study.  

A three-band model developed by Duan et al. (2010), to estimate chlorophyll-a in eutrophic 

and turbid waters showed that a waveband intervals with (λ1 > 600 nm, λ2 > 600 nm, λ3 > 

750 nm), with lower restrictions on wavelength optimization, provided higher determination 

coefficient and lower root mean squared error. Our results also shows that a 3 bands model 

that uses a ratio of any of the first 3 bands (1-3) to band 4, multiplied by band 5 provided the 

highest determination coefficient, R2 ≥ 0.6 (TABLE 3). 

 

Chlorophyll-a concentrations in this study are relatively high. Figure 6 shows that 

the correlation between the in situ chlorophyll-a and the best bands combination is good for 

wide range of concentrations (36-423 mg m−3). The correlation maybe not very strong in low 

range of chlorophyll-a concentration. This makes the best band combination limited to 

mesotrophic, eutrophic and hypereutrophic inland waters. For oligotrophic freshwater bodies, 

this band combination may still need to be tested and improved. 
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CONCLUSION 

 

The information presented in this study increases the knowledge about chlorophyll 

monitoring in case II waters using Landsat OLI mission. High spatial variation of chlorophyll-

a concentration can occur in the reservoir. The assessment of the trophic state of Karaoun 

reservoir in 2013 and 2015 has shown that it is eutrophic to hypertrophic. The biodiversity of 

the phytoplankton community is low and is dominated by two cyanobacteria species, 

Aphanizomenon ovalisporum and Microcystis aeruginosa. Reservoir managers in Karaoun 

reservoir should take actions that reduce the nutrient influx to the reservoir to improve its 

trophic state.  

 

We assessed the potentiality of Landsat OLI in determining chlorophyll-a 

concentration in Case II waters. A good correlation was found between OLI band 5 and 

measured chlorophyll-a concentrations in Karaoun reservoir. The use of band combination of 

B2:B4 band ratio multiplied with B5 resulted in best correlation with measured chlorophyll-a 

in our study and shows that Landsat OLI has the potential to be used for analysis of 

chlorophyll-a. This monitoring approach using Landsat OLI can be transposed and tested on 

other eutrophic lakes and reservoir throughout the world with different characteristics to 

verify its efficiency as cost effective method for the monitoring of phytoplankton biomass. 
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