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ABSTRACT 

 

Haddad, J. 2017. A Note on optimal estimation in the presence of outliers. Lebanese 

Science Journal, 18(1): 136-141. 

 

The basic estimation problem of the mean and standard deviation of a random normal 

process in the presence of an outlying observation is considered. The value of the outlier is 

taken as a constraint imposed on the maximization problem of the log likelihood. It is shown 

that the optimal solution of the maximization problem exists and expressions for the estimates 

are given. Applications to estimation in the presence of outliers and outlier detection are 

discussed and illustrated through a simulation study and analysis of trade data.  
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INTRODUCTION 

 

Quality Control charts are used to detect sudden and subtle changes that may occur in a purely 

measurement process. That is the model:  

 

ntifX ttt 1==                 (1) 

 

where st  are assumed to have the same value   except for few values of t . Random 

errors t  are necessarily independent with zero mean and a constant variance 
2 . 

Additional assumptions about the distribution of the errors may be added later. 

 

The common treatment for the above problem in (1) is done through the 3-sigma 

method, where observations are compared to lie outside the interval 

)/3,/3( nn    as given in Hogg et al (2005). A further improvement is to use 
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Cumulative Sums known as CUSUM charts as discussed in Page (1961) and in Taylor (2000). 

 

Other methods that may be utilized for making inference for model (1) is to use robust 

techniques that are resistant to the presence of observations that have departed from the 

underlying assumptions and then outlying observations are detected where characterization of 

these observations would be considered. 

 

A constrained likelihood approach is used here to draw optimal estimates for the 

parameters of the process given in Equation (1). A non linear optimization problem, NLP, is 

formulated. An NLP optimization is shown to be a useful tool in the context of hypothesis 

testing where the restriction of the null hypothesis is taken as the constraint. For more details 

about constrained tests see for instance Abraham and Yatawara (1988). 

 

In this manuscript, the formulation of the NLP is discussed in section (2). Section (3) 

has a Monte Carlo study to validate the proposed method. Finally section (4) has extensions to 

outlier detection and then it is applied to Trade data. 

 

THE ESTIMATION PROCESS 

 

For the model given in (1) under the assumption of equal means   and normally distributed 

errors, the log likelihood is given by  

 
22 /2)()(ln),(    t

t

Xnl             (2) 

 

 and then the maximum likelihood estimates of   and   are the values that maximize 

),( l  or equivalently minimize ),( l . However, the minimization process has to 

be constrained by the distributional properties. One such constraint is qX t |<)/(|  , 

for all nt ,1,=   and some quantile value which is about 3 in the this case. If one 

observation, say  qX j = , then the following NLP can be considered where the 

objective is to minimize the Lagrangian function  
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where 0j . The existence of an optimal solution has been discussed in Winston (2004) 

and it is the solution of the following set of equations:  

 

0=])/([/)(1)/( 232   


jjt

jt

XXn        (4) 
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0=)/()/(2  jt

jt

X  


                         (5) 

 

If the Lagrangian 
j  is zero, then the usual estimators X  and nXXs i

n

i
/)(= 2

1=

2   

are the optimal solution of the equations (4) and (5), respectively. On the other hand, if the 

binding constraint has a nonzero ”shadow Price“, then we must have  

      qX j =                              (6) 

 

Solving equations (6) for  , and equation (5) for 
j , and substituting in equation (4) gives 

̂  as the positive root of the quadratic equation,   

 

 0,=ˆˆ1)( 21

2 SqSn                                 (7) 

 

where )(=
1=1 jt

n

t
XXS   and 

2

1=2 )(= jt

n

t
XXS  . Thus the following is the 

optimal solution: 

 

2

1)/(41))/((1)/(
=ˆ 2

2

11  nSnqSnqS
            (8) 

 and  

 ˆ=ˆ qX j                                  (9) 

 

The value q  is not known apriori, but one may resort to deletion of the 
thj  

observation, then an estimate of   and   are obtained to compute a value for q . 

However, there is an alternative method of approximating the value of q ; it is estimated 

through the moments of the two statistics 1S  and 2S , respectively. It can be shown (see 

appendix) that the following statistic  

 

    
2

1)/(2
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n

nSS
                                  (10) 

 

is an unbiased estimator for 
2 . Then the value of q  is obtained using equation (7) and 

finally   is obtained from equation (6). It is worth pointing out here that the estimation 

process is done in the reverse order as compared to the usual ones. That is   is estimated first 

then "residual“ q  then   at the end.  
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A SIMULATED EXAMPLE 
 

To demonstrate the viability of the derived solution of the NLP problem, a simulation 

study has been carried out where contamination is taken at a known location. A random 

realization is generated from a standard normal variates of length n . The "middle" observation 

is contaminated by adding q  to the actual value of the mean. The mean and the standard 

deviation are computed before and after the contaminants are added. Then the optimal estimates 

are computed using the expressions that are derived in section 2 and given in the following 

sequence: ̂  is obtained from equation (10), then q̂  is determined from equation (7), and 

finally ̂  is estimated from equation (6). The following table shows the results of a 10000 

runs of a data generated from a standard normal. 

 

TABLE 1 

 

Comparison of the Three Estimates 

  

 n    q    No outliers   With outliers   Optimal  

10  3   -0.00515, 0.96983   0.29387, 1.33005   0.96757, 3.29787, 0.003047  

  5   0.00069, 0.96785   0.50077, 1.83529   0.96424, 5.54277 , 0.02297  

50  3  0.00053 , 0.99345   0.06024, 1.07155   0.99319, 3.04585, 0.00704  

  5   0.00137, 0.99465   0.10110, 1.21338   0.99451, 5.07507, 0.00521  

 

It is quite noticeable that ̂  is almost the same as if no contamination were added. 

However, the mean value estimate ̂  is closer to the actual   and does better than X . 

Further the value of q gets closer to the actual value as n increases. 

 

OUTLIER DETECTION 
 

It is worth pointing out here that the estimating equation in (7) is based on the two 

statistics 1S  and 2S  where they take the values of 0 and 
2 , respectively, when 

jX  is 

equal to   and departs significantly when an outlier is present. Thus if the location of the 

outlier is known, ̂  is stable and recovers more or less the value of   as demonstrated in 

the previous section (3). On the other hand if the outlier location is unknown then one would 

compute )(ˆ j , for nj ,1,=  . Hence the observation with the smallest ̂  will be 

declared as the location of an outlying observation. 

 

To apply the proposed procedure, the Trade data given in Toylor (2000) is used. The 

data set has 24 values The following table reports the values of )(ˆ j :  
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TABLE 2 

 

 Estimate of )( j  of the Trade Data.  

  

 j    1   2   3   4   5   6   7   8  

)(ˆ j    1.963  1.956  1.963  1.963   1.961  1.923   1.881   1.922 

j    9   10   11   12   13   14  15   16  

)(ˆ j    1.961   1.771   1.963   1.962   1.959   1.963   1.875   1.950  

j    17   18   19   20   21   22   23   24  

)(ˆ j    1.882   1.963   1.962   1.963   1.942   1.965   1.962   1.962  

 

It is quite clear to conclude that the 
th10  observation is a potential outlying 

observation. This is the same observation that was identified by Taylor’s (2000) CUSUM 

method. 

 

APPENDIX 

 

For a fixed value 
jX , ),( 2 jjt XNXX  : , 

Now since )(=1 jtt
XXS   then  

 

                       )1)((=)( 1 jXnSE                      (11) 

and  

                       
2

1 1)(=)( nSV                          (12) 

 

Moreover for 
2

2 )(= jtt
XXS  , then  
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22 )1)((1)(= jXnn                 (13) 

 

Therefore 
22

12 2)(=1))/((  nnSSE  and the result of equation (10) follows. 
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