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ABSTRACT 

 

Naja, Rola, Nadia Mouawad and Ali J. Ghandour. 2017.  Spatio-Temporal Optimal Law Enforcement Using 

Stackelberg Games. Lebanese Science Journal. Vo. 18, No. 2: 244-254. 

 

 Every year, road accidents claim the lives of around 1.2 million worldwide (USDOT-NHTSA, 

2012). Deploying speed traps helps bounding vehicles speed and reducing collisions. Nevertheless, deterministic speed 

traps deployment in both spatial and temporal domains, allow drivers to learn and anticipate covered areas. In this 

paper, we present a novel framework that provides randomized speed traps deployment schedule. It uses game theory 

in order to model drivers and law enforcers’ behavior. In this context, Stackelberg security game is used to derive best 

strategies to deploy. The game optimal solution maximizes law enforcer utility. This research work aims to optimize 

the deployment of speed traps on Lebanese highways according to the accidents probability input data. This work 

complements the near real time accident map provided by the Lebanese National Council for Scientific Research and 

designs an optimal speed trap map targeting Lebanese highways. 

 

Keywords: Stackelberg games, law enforcement, game theory. 

 

INTRODUCTION 

 

 The growing mobility of people and goods has a very high societal cost in terms of collisions, 

fatalities and injured people every year (USDOT-NHTSA, 2012; USDOT-NHTSA-DOTHS 811, 2011; Naja, 2013). 

The US National Highway Traffic Safety Administration (NHTSA) provides regularly statistics on vehicle type 

proportions in traffic crashes. The NHTSA statistics on police reported motor vehicle show that the majority of 

accidents occur with passenger cars (56.3%) (USDOT-NHTSA, 2012). On the other hand, Lebanese Red Cross Road 

Accidents Statistics for 2014 reported 10866 accidents, 14516 injuries and 229 killed people (Lebanese Red Cross 

Roads Accidents Report for 2014). These alarming statistics emphasize the road safety problem and stress the urgent 

need to find a solution that reduces road collisions. Traffic law enforcement is the conventional solution adopted by the 

Internal Security Forces: Traffic law enforcement encloses the police actions to make sure that the law is being obeyed, 

in our case verifies if the traffic speed limit is respected. Usually it is based on speed trap deployment. Speed traps 

consist of hidden equipment, generally radar (object-detection system that uses radio waves to determine car speed), 

used by the police to detect drivers speed. 

 

Nevertheless, speed trap deployment faces four major problems: 

 First, current trap deployment is spatially deterministic: drivers may learn the speed traps locations 

and then can have relevant enforcement information.  

 Second, speed traps deployment schedule is temporally deterministic. Consequently drivers 

anticipate coverage areas ahead of time.  

 Third, Lebanese Internal Security Force (ISF) is in possession of a limited number of resources. 

Thus, speed traps coverage is restricted to certain Lebanese roads, leaving many roads unprotected. 

 Fourth, current speed trap deployment does not take into account the distribution of accidents 

probability on-roads. 
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This research paper strives to provide optimal speed traps allocation strategies randomized in space and time. 

In this context, we propose and evaluate an innovative platform designed to help the ISF in optimally allocating speed 

traps on Lebanese highways. It aims at scheduling the speed traps in a way that ensures the maximal coverage and at 

the same time considering randomness to avoid driver’s predictability.  

 

This optimal allocation will be achieved by modeling the problem as a Stacklberg security game (SSG) where 

the players are the law enforcer and the driver. 

 

Law enforcement and game theory 

 

A wide number of research papers was concerned in studying law enforcement .The majority of researchers 

formulate the problem using game theory, more precisely stackelberg game (Shieh et al.; Korzhyk, 2013); Bosansk´y 

et al., 2011; Jain et al., 2011; Brown et al., 2014). 

 

In fact, Game theory is a mathematical tool developed to understand competitive situations in which rational 

decision makers interact to achieve their objectives (Turocy and Stengel, 2001;  Prisner, 2014). In particular, a 

Stackelberg security game involves two players: a leader and a follower, where the leader (denoted as the defender) 

must protect a set of targets from the follower (denoted as the adversary). The defender has a finite number of resources 

R={r1,r2,…rk} with which to protect the set of targets T={t1,t2…,tN} against the adversary, where k is the number of 

available resources and N is the number of targets that should be protected such that k<N. 

 

With the Stackelberg model, the defender chooses a mixed strategy first, and the attacker chooses a strategy 

after observing the defender’s choice. The standard solution is then a Strong Stackelberg Equilibrium (SSE), (Korzhyk, 

2013). 

 

Law enforcement research work 

 

There have been many models developed to solve the problem of randomizing law enforcement (Adler et al., 

2013; Curtin et al., 2005;  Sharma, 2007;  Paruchuri, 2007).  In the following, our efforts are oriented towards presenting 

the most important papers tackling the law enforcement randomization. In addition, a synthesis of these works is 

provided and brings the focus to the added value of our proposal. 

 

A software called ARMOR (Assistant for randomized monitoring over routes) is described (Pita, 2008). The 

ARMOR system focuses on security measures at the airports and optimizes security resource allocation using Bayesian 

Stackelberg games.  However, the DBOSS algorithm was not scalable due to the absence of the reduction of space of 

strategies. Another approach, called IRIS (Intelligent randomization in scheduling) is presented (Tsai et al., 2009). It 

randomizes schedules of air marshals on international flights based on Stackelberg game. In IRIS, the payoffs do not 

depend on the coverage vector, but on whether or not the target is attacked. This idea could not be applicable to the 

traffic domain where the enforcer’s utility is higher when the road is covered. A solution called PROTECT (Port 

resilience operational tactical enforcement to combat terrorism) is proposed (Eric Shieh, 2013). This approach considers 

the maritime security of ports and waterways that faces increased risks such as terrorism and drugs trafficking. The 

linear program for this approach solves only the probability distribution over the defender’s strategies and does not 

give an idea about the pure strategy chosen by the attacker. Yin, et al. (2012) presented a new work called TRUSTS 

(Tactical randomization for urban security in transit systems) designed to protect rail systems. In the train domain the 

patroller is tied to the predetermined transportation schedules, however in traffic patrolling the situation is more 

complex because the continuous nature of traffic patrolling should be taken into account.  

 

 The majority of these models focus on securing national infrastructure such as airports, historical 

landmarks, or a location of political or economic importance, and none have focused on traffic patrolling. 

 

 In this research work, an innovative patrolling platform is developed targeting Lebanese highways. 

Our contribution is four-fold: 

1. We propose a space randomized speed trap deployment; in fact it takes into account accidental 

roads via probability of accidents. 

2. This platform randomizes temporally resources allocation. Thus it overcomes driver’s anticipation.  

3. This novel tool avoids applying speed traps deployment in congested roads. This is achieved by 

taking into account congestion probability. 
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4. Law enforcement is applied on authentic highways dealing with complex roads. This is achieved 

by adopting a compact representation. 

 

Accordingly, this study focused on the optimal allocation of speed traps using an innovative platform.  

 

MATERIALS AND METHODS 

 

Game model for speed trap allocation 

 

The present section focuses on optimally allocating speed traps on highways. In fact, the ISF organization 

has a limited number of resources to deploy on Lebanese territory. Therefore, in order to help the ISF reducing car 

accidents and optimally deploying the limited speed traps, a dynamic strategy tuned to temporal parameters, accidents 

statistics, traffic, number of resources should be adopted.  

 

In order to achieve this randomization, the decision of setting the speed traps is modeled as a SSG, where in 

this case the leader is the law enforcer and the follower is the driver. The law enforcer has a certain number of roads 

segments that should be covered using a finite number of speed traps, and the driver will choose the segment where to 

violate. The law enforcer will choose a mixed strategy so that the driver will be unsure of the exact place of the radars.  

 

Payoff matrices 

 

Two payoff matrices are considered in this study, one for the law enforcer and another for the driver related 

to their utility functions. The enforcer payoff is derived as follows: 

 If the enforcer covers a certain road and in case the driver violates it, then the enforcer will get G>0 

where G corresponds to the social welfare. 

 In case the enforcer is not covering a road and if the driver violates it, then the enforcer will get a 

negative utility –G*Pa(t), where Pa is the probability of accident at the considered road t. 

 

The driver payoff is computed as follows: 

 When the driver violates on a covered road segment, then he/she will be punished and will have to 

pay the ticket. Therefore his payoff in this case will be g-𝜆s ≤0, where g is the net gain of the driver (the time saved by 

the driver), s is the punitive cost (the price of the ticket paid by the driver) and 𝜆 is a parameter transferring the 

punishment into the negative utility. 

 If the driver violates on an uncovered road segment, then he will save time and get a positive utility 

g. 

 

For more clarity, the following example gives an idea about setting 2 radars on 3 road segments A, B and C. 

In this case, we have C3
2 possible strategies for the ISF which are: covering A, B; covering A, C or covering B, C. Thus, 

the driver will have to choose between violating segment A, violating segment B or violating segment C. In this case, 

the payoff matrix is as indicated in Table 1. 

 

Table 1. Enforcer and driver’s payoff matrix. 

 

Enforcer/driver A B C 

A,B G; g-𝜆s G; g-𝜆s -G*Pa(C);g 

A,C G; g-𝜆s -G*Pa(B);g G; g-𝜆s 

B,C -G*Pa(A);g G; g-𝜆s G; g-𝜆s 

 

Compact representation 

 

Our main concern is to reduce the space of strategies. In fact, enumerating the complete set of strategies 

presents a scalability challenge. Indeed, the more the number of roads is, the larger the strategies space is; leading to 

an increase of the program runtime in a polynomial way. In order to overcome this problem, we did proceed as follows: 

 First, the study focused on highways and motorways where the traffic speed could reach more than 

30mph≃ 50 km/h (Archer et al., 2008). 
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 Second, the aim was to reduce the space of strategies by developing a distributed algorithm to be 

executed by a local ISF agent. In fact, the Lebanese ISF organization deploys 25 centers in different Lebanese 

governorates (ISF-Internal Security Forces Website). Each center runs the tool restricted to its covered region. Thus, 

the software will manipulate a reduced number of roadways and will decrease the set of strategies. 

 Third, our tool did not take into consideration congested road, ie. roads that witness high vehicular 

density. In fact, a high density impacts the velocity and forces the drivers to decelerate. Thus, speed enforcement does 

not pose a problem in this scenario. 

 

Stackelberg equilibrium 

 

In order to solve the Stackelberg game, a mixed integer quadratic program (MIQP), was defined and a 

linearized equivalent mixed integer linear program (MILP) was then presented. We will take the mixed strategy for the 

enforcer that will give the highest payoff when the driver plays a strategy that maximizes its utility was adopted, 

whereas: 

 X and Q represent the index sets of enforcer and driver’s pure strategies, respectively. 

 x=<xi> the enforcer’s mixed strategy vector, where xi is the probability of using strategy i. 

 q=<qj> the driver’s strategies vector where qj ϵ{0,1} , qi is equal to 1 when the strategy j is used 

by the driver. 

 X and Q represent the index sets of the leader and follower's pure strategies respectively. 

The payoff matrices R and C are defined such that Rij is the reward of the leader and Cij is the reward of the 

follower when the leader adopts pure strategy i and the follower adopts pure strategy j. 

 

The enforcer's MIQP problem is defined in Equations 1 to 7 as follows: 

 

 max
𝑥,𝑞,𝑎

       ∑ ∑ 𝑅𝑖𝑗𝑥𝑖𝑞𝑗𝑗∈𝑄𝑖∈𝑋   (1) 

s.t.      ∑ 𝑥𝑖𝑖∈𝑋 = 1 (2) 

∑ 𝑞𝑗 = 1𝑗∈𝑄   (3) 

0 ≤ (𝑎 − ∑ 𝐶𝑖𝑗𝑥𝑖𝑖∈𝑋 ) ≤ (1 − 𝑞𝑗)𝑀  (4) 

      𝑥𝑖 ∈ [0,1] (5) 

       𝑞𝑗 ∈ {0,1} (6) 

𝑎 ∈ ℜ (7) 

 

The first and fourth constraints define a xi as a probability distribution over the strategies set. The second and 

fifth constraints limit the vector q to a pure distribution over the driver’s strategies that is q has one coordinate equals 

to one which corresponds to the pure strategy chosen by the driver, and the remaining coordinates are equal to zero. 

The third constraint ensures that qj=1 only for strategy j that is optimal for the driver: The leftmost inequality ensures 

that for all jϵQ, a≥∑ Cijxii∈X . This means that for a given vector x, 𝑎 is an upper bound for the driver for any action. 

The rightmost inequality is inactive for every action where qj=0 since M is a large positive quantity. For the action that 

has qj= 1 this inequality states that the adversary’s payoff for this action must be ≥a, which combined with the previous 

inequality shows that this action must be optimal for the driver. We linearized the previous MIQP through the change 

of zij=xiqj, thus we will obtain the following MILP in Equations 8 to 16 as follows: 

 

max
𝑞,𝑧,𝑎

     ∑ ∑ 𝑅𝑖𝑗𝑗∈𝑄𝑖∈𝑋 𝑧𝑖𝑗   (8) 

s.t.       ∑ ∑ 𝑧𝑖𝑗𝑗∈𝑄𝑖∈𝑋 = 1 (9) 

∑ 𝑧𝑖𝑗𝑗∈𝑄 ≤ 1  (10) 

𝑞𝑗≤∑ 𝑧𝑖𝑗𝑖∈𝑋
≤ 1 (11) 

                                      ∑ 𝑞𝑗𝑗∈𝑄 = 1                                  (12) 

0 ≤ (𝑎 − ∑ 𝐶𝑖𝑗(∑ 𝑧𝑖ℎℎ∈𝑄𝑖∈𝑋 )) ≤ (1 − 𝑞𝑗)𝑀  (13) 

𝑧𝑖𝑗 ∈ [0 … 1] (14) 

𝑞𝑗 ∈ {0,1} (15) 

𝑎 ∈ ℜ (16) 
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Spatiotemporal optimal patrolling platform  

 

 The proposed innovative spatiotemporal speed trap allocation platform derives best strategy of 

speed trap deployment. It consists of five modules: 

 Module 1 manipulates the following inputs: date and time, number of available resources, traffic 

intensity, and probability of accidents and the set of roads. 

 Module 2 identify uncongested roads that are prone to speed traps deployment and proposes law 

enforcer speed traps deployment strategies on these selected uncongested roads. 

  Module 3 computes law enforcers and drivers utilities. It provides payoff matrices needed for 

equilibrium resolution. 

 Module 4 computes probability distribution of resources based on SSE. 

 Module 5 of spatiotemporal speed trap allocation tool will produce a schedule to be implemented 

by the law enforcer. 

 

RESULTS 

 

This section evaluates the results obtained when the linear program with the SSG is applied to the Lebanese 

Highways domain. The results obtained are based on real data provided by CNRS. 

  

Authentic data inputs are injected into this platform. Several program batches are conducted on 4 different 

scenarios. Scenario 1 evaluates the impact of shifts and resources on enforcer’s utility. Scenario 2 studies the probability 

distribution with different probability of accidents. Scenario 3 tackles extreme accidents probability and evaluates the 

impact of resources on enforcer’s utility. Scenario 4 presents a comparative study of the enforcer’s utility in both cases: 

deterministic and random deployment. 

 

Scenario 1: Study of enforcer’s utility variation 

 

Scenario 1 aims at evaluating the impact of deploying number of resources and the different shifts (Shift1 

(from 8AM to 1 PM), Shift2 (from 2PM to 7PM) and Shift3 (From 8PM to 1AM) on the enforcer’s utility. Scenario 1 

parameters are identified in Table 2. 

 

Table 2.  Scenario 1 parameters. 

 

 

Roads 

 

 

 

Traffic Density 

 Ant- 

elias 

Dbaye Nakas

h 

Naher 

Elkale

b 

Kaslik Jounie

h 

Tabarj

a 

Bouar Nahr 

Brahi

m 

halat jbeil Barb-

ara 

 0.3 0.35 0.34 0.3 0.45 0.3 0.3 0.2 0.7 0.7 0.65 0,7 

Accident 

proba-bility 
 

Shift 1                      

Shift 2                  

Shift 3 

0.38 0.35 0.34 0.37 0.38 0.38 0.35 0.38 0.37 0.36 0.37 0.37 

0.31 0.32 0.31 0.32 0.29 0.30 0.31 0.30 0.28 0.30 0.31 0.31 

0.11 0.12 0.11 0.12 0.09 0.10 0.11 0.08 0.10 0.11 0.11 0.12 

Number of resources  

2-3-4-5-6 

 

Table 2 indicates the different roads, with their traffic density, the probability of accidents on each road, at 

each shift duration and the different number of resources available. We computed the enforcer’s utility for each shift 

and number of resources as exhibited in Figure 1. 

 

The utility of the enforcer had the lowest values in the first patrolling shift (from 8 AM to 1 PM) because of 

the high probability of accidents at this interval of time of the day. In the second and third patrolling shift, the probability 

of accidents starts to decrease and therefore the enforcer’s utility is higher than the first shift. It is to be noted that the 

more we deploy resources on roadways, the more the enforcer’s utility increases. 
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Figure 1.  Enforcer's utility in three different epochs of the day. 

 

Scenario 2: Study of the probability distribution over strategies 

 

In this scenario, the probability distribution over the strategies according to various accidents probabilities 

were evaluated. Table 3 shows the list of parameters considered. 

 

Table 3.  Scenario 2 parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the variation of the strategies probability along the variation of the probability of accidents 

on each road. When placing 2 resources on Jbeil and Antelias highways, with the probability of accidents equal to 0.8 

and 0.85, respectively, our tool converges towards 0.499999989 as a probability of strategy Antelias-Jbeil. This result 

confirms the relevance of deploying speed traps on accidental roads. When the probability of accidents in Antelias and 

jbeil is 0.25 for both, the probability of using the strategy Antelias –Jbeil is 7.29E-09. We can conclude that the 

probability distribution over the strategies varies with the probability of accidents on each road.  
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Figure 2.  The probability distribution over strategies with various probability of accidents. 

 

Scenario 3: Study of extreme conditions of accident probabilities 

 

 This study tackles two extreme cases of accidents probability. For each case, the enforcer’s utility is 

calculated according to various numbers of resources. Table 4 shows the list of parameters considered. 

 

Table 4.  Scenario 3 parameters. 

 

List of roads L Chekka-Jbeil-Antelias-Dbaye.-kaslik-anfeh 

Number of resources 2 – 3- 4- 5 

Probability of accidents (P) 1-0 

Traffic density 
Cheka Jbeil Antelias Dbaye Kaslik Anfeh 

0.3 0.3 0.25 0.3 0.3 0.35 

 

Scenario 3 results are shown in figures 3 and 4. This scenario considers two extreme cases, where the 

probability of accidents P is 1 or 0. We compared the enforcer’s utility in each case by varying the number of available 

resources. When the probability of accidents is 1, Figure 3 shows that the use of 2 resources to cover the 6 considered 

roads gives the enforcer a negative utility, since the probability of accidents is very high; with reduced number of 

resources, the enforcer is leaving many roads unprotected. Therefore the law enforcer is exposing the driver to a higher 

risk of accidents. As a result the utility will be negative. When the number of resources increases by 1, the utility of the 

defender will start increasing and will get a positive value. This is due to the fact of covering more roads, and therefore 

exposing drivers to a lower risk of accidents. 
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Figure 3. Defender’s utility with various number of resources (2,3,4,5) when P=1. 

 

In the extreme case of a null probability of accidents shown in Figure 4, roads are safe and there is no risk of 

traffic accidents and fatalities. By varying the number of resources from 2 to 5, we notice in figure 4 that the enforcer’s 

utility increases. This utility increase is justified by the fact that when the enforcer is covering a certain road, he will 

get a positive utility.  

 

The case of a null probability of accidents could be studied after applying the proposed tool for a long period 

of time on the Lebanese map. We may assume that after being punished for several times, the driver will obey the laws 

and drive within speed limits. Thus, the probability of accidents caused by traffic speed will decrease and tends to be 

null. 

 
Figure 4.  Defender’s utility with various number of resources (2, 3, 4, 5) 

 when P=0. 

 

Scenario 4: Study of enforcer’s utility with deterministic and random deployment 

 

This scenario presents a comparison between the deterministic law enforcement and the random schedule 

provided by this novel platform.  Table 5 considered a set of roads in 3 different shifts as studied in scenario 1.The 

table assumed that the deterministic deployment is covering roads: Dbaye-Jounieh-Jbeil all over the 3 shifts. Figure 5 

shows the enforcer’s utility for the two enforcement types. As we can see, scheduling speed traps deterministically at 

same location during the 3 shifts of the day gives a lower enforcer’s utility from choosing a randomized placement. 

This result confirms the efficiency of the proposed solution: When placing speed traps at the same location, drivers will 
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learn the places of the covered areas and will anticipate them by reducing their speed in order to avoid the punishments, 

which consequently gives the enforcer a low utility. However, when changing the placement of speed traps from one 

shift to another, more roads are covered especially accidental ones which gives the enforcer a higher utility. 

 

Table 5. Scenario 4 parameters. 

 

Roads Dbaye Jounieh Tabarja Bouar Jbeil 

Probability of accidents in shift 1 0.32 0.35 0.36 0.37 0.33 

Probability of accidents in shift 2 0.31 0.3 0.33 0.34 0.31 

Probability of accidents in shift 3 0.11 0.12 0.13 0.11 0.1 

Number of resources 3     

 

 
Figure 5. Enforcer’s utility with both deterministic and random schedules. 

 

DISCUSSION 

 

Establishing traffic security is a challenge that is faced by the ISF in Lebanon. The deterministic allocation 

of speed traps, leads not only to a lack of temporal randomization, but also to a lack of spatial randomization, since it 

is covering some specific roads leaving many other roads unprotected. 

 

While randomized patrolling is important- as drivers can observe and exploit before violating- randomization 

must use different weighing functions to reflect the complex costs and benefits of allocating speed traps.  

 

Our designed tool is developed to help the ISF in optimally deploying speed traps on the Lebanese highways. 

Based on game theory, more specifically on SSG, a game between the law enforcer and the driver is modeled in order 

to find the optimal strategy that ensures the coverage for the maximum number of roads, and at the same time avoids 

the deterministic law enforcement. 
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After dividing the Lebanese map into several parts according to the nearest ISF center, the proposed tool is 

applied in each of these centers, Lebanese drivers will then be confused about the radars place, and will be punished in 

case of laws violation. This will discourage drivers from exceeding regulatory speed.  

 

This work tackled 4 scenarios; first the enforcer’s utility variation was studied and showed that the enforcer’s 

utility was enhanced by adding more resources and reduced accidents probability. Second, after studying the probability 

distribution over strategies, it was concluded that this distribution varied with accidents probability on each road, and 

more specifically the relevance of deploying speed traps on accidental roads was confirmed. Third, the analysis tackled 

extreme conditions of accident probabilities: it confirmed that using a few number of resources on accidental roads will 

give a negative utility to the enforcer. Fourth, the study showed that the enforcer’s utility is higher in case of using the 

random schedule instead of the deterministic enforcement. 

 

After analyzing the results obtained, one can see that this approach overcomes the problems presented in 

previous research papers. For example, the scalability problem (J. Pita, 2008) is solved by the reduction of the strategies 

space. Furthermore, in contrast to the findings of Eric Shieh (2013), the solution provided by this study was for both 

players and not only for the driver. Finally, this work dealt with the complexity of roads and took into account the 

continuous nature of traffic patrolling; it considered congestion level as an input on the road segments. Moreover, the 

accidents probability on the roads was used as an important input in order to provide optimal solution. 
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