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ABSTRACT

B. Talaee, G. Nasiri. 2019. On intersection graph of intuitionistic fuzzy submodules
of a module. Lebanese Science Journal. 20(1): 104-121.

There are some interesting relations between submodules of a module and its
intuitionistic fuzzy (IF) submodules. In this paper we investigate some relationships
between submodules of a module and its IF submodules. Then we introduce a graph
structure on IF submodules of a module and obtain some properties of it, that is the
main goal of this paper. We define the intersection graph of submodules of a module M
(G ) and we show that a submodule N of M isa centerin GM —6 ifandonly if ;(::
isacenterin G —;(;F. We get some relationships between IF submodules of a module
and their supports, as vertices of IF graph and crisp graph of a module M ,
respectively. We show that an IF submodule A of M is center in IF graph of M

if and only if A" is a center in crisp graph of M .

Inprimering R, we show that every vertex of intersection graph of IF ideals of
R is center. In general the nature of intersection graph of IF submodules of a module
under intersection, homomorphic images, finite sum and other algebraic operations of its
vertices, are investigated.
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INTRODUCTION

After the introduction of fuzzy sets by L. A. Zadeh [18], a number of applications
of this fundamental concept have come up.

A. Rosenfeld [16] was the first one to define the concept of fuzzy subgroups of
group. C. V. Negoita and D. A. Ralescu [14] applied this concept to modules and defined
fuzzy submodules of a module. A. Rosenfeld [16] interpreted the concept of fuzzy group
which has been influencing the researchers gradually. As a generalization of fuzzy sets,
the concept of intuitionistic fuzzy sets was introduced by K. T. Atanassov in [3]. Using
this idea, B. Davvas [8] established the intuitionistic fuzzification of the concept of
submodules of a module. The intersection graph of algebraic structures has been studied
by several authors. J. Bosak [4] in 1964 defined the graph of semigroups. Inspired by his
work, B. Csakany and G. Pollak [7] in 1969, studied the graph of subgroups of a finite
group. Recently, in 2009, the intersection graph of ideals of a ring, was considered by
Chakrabarty, Ghosh, Mukherjee and sen [5]. Rajkhowa, K. K. and Saikia, H. K in [15]
study on center of intersection graph of submodules of a module. Here we define the
intersection graph of intuitionistic fuzzy submodules of a module. Our main goal is to
study the connection between the algebraic properties of a module and the graph theoretic
properties of the graph associated to it. In this paper after some essential preliminaries of
fuzzy sets and intuitionistic fuzzy sets and submodules, we study the center of
intersection graph of intuitionistic fuzzy submodules of a module and establish some
results relating with corresponding crisp concepts. This intersection graph of
intuitionistic fuzzy submodules is an infinite graph. The importance of intuitionistic
fuzzy theory is that it improve fuzzy theory such that the non-membership of each
member is a value between 0 and 1 — its membership value. Intuitionistic fuzzy set is
very profitable model to elaborate uncertainty and vagueness involved in decision
making. Intuitionistic fuzzy set has many applications in sciences and industry such as
medical diagnosis, medicine, decision making problems.

For more information about intuitionistic sets and systems, readers are urged to
refer to the following literature [6, 9, 11, 13].

MATERIAL AND METHODS
A background of intuitionistic fuzzy submodules
Throughout this paper R will denote a ring with identity and all modules are
unitary left R-modules. Since then we use briefly "IF" for "intuitionistic fuzzy". In this

section first we give some basic definitions of F and IF sets. We refer the reader to [3, 8,
18] for these definitions.
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Note that we use notations v and A for maximum and minimum, repectively.

Definition 1: Let X be a set. Amap x: X —[0,1] is called a fuzzy subset of X. The
collection of all fuzzy subsets of X is denoted by [0,1] *.

Let a €[0,1]%, then

1. ac p ifandonly if a(x)<pg(x) forevery xe[0]1] ;

2. (aup)(X)=a(x)v p(x) forevery xe[0]];

3. (@ B)(X) =a(x) A B(x) forevery xe[0]].

Definition 2: A fuzzy set x of aring R is called a fuzzyideal, if it satisfies the
following properties:

Lo pu(x=y) = u(x) A u(y);

2. u(xy) = pu(X)v u(y) forall x,yeX .

Definition 3: A fuzzy subset 2 of a module M is called a fuzzy submodule of M if for
every x,yeM and r eR, the following conditions are satisfied
1. u(0)=1;
2. p(X+Y) =z u(X) A pu(y);
3. u(rx) > u(x).
We use the notation F(M) for the set of all fuzzy submodules of the module M .
Let «,feF(M). Thenthesumof « and g is defied by
(a+B)X)=Aa()AB(Y) | y+z=Xy,ze M}
forevery xeM .

Definition 4: An intuitionistic fuzzy set (inshort IFS) A of a non-void set X is an object
having the form A ={(x, z,(X),vA(X)): X € X} where the functions u,: X —[0,1] and
v, X —[0,1] denote respectively the degree of membership (namely x,(x)) and the
degree of non-membership (namely v,(x)) of each element xe X to the set A, and
0, (X)+v,(x)<1 forall xe X.

Definition 5: Let X be a non-void set and A= (u,,v,), B=(1,v5) be IFS's of X.
Then
1. AcB ifandonlyif u,(X) <z (x) and v,(x) 2vg(x) forall xe X ;

2. A=B ifandonlyif p,(X) = (x) and v,(X) =vy(x) forall xe X;
3. A°=(v,,u,) iscalled the IFS complement of A;
4. ANB ={(X, s (¥) A 15 (X), va(X) V5 (X)); X € X}
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5. AUB ={(X, ta(X) v 115 (X), v (X) AV (X)); X € X}

Definition 6: A IF set A=(u,,v,) of R is called an intuitionistic fuzzy ideal (IF
ideal), if it satisfies the following properties:

Lo pn(X=y) 2 pa (X) A pa(y) s

2. p1a(XY) 2 15 (X) v pa(Y) ;

3. va(X=y) v () vv,a(y);

4. va(xy) Sva () Av,a(y).

Fortwo IF ideals A and B ofaring R define
AB = (yAB,vAB), such that

=, NAp @) | yz=3 and v ()=l (v, (2) [ yz=x}t , for
every xeR. Itiseasytoseethat AB < A, foreverytwo IF ideals AandBof R.

Definition 7: Let M be an R-module and A=(x,,v,) an IFS of M. Then A is called an
intuitionistic fuzzy submodule (IFM) of M, (denoted by A< M ), iIf A satisfies the
following
1. 1,(0)=1,v,(0)=0
2. pp(X+Y) 2 wp(X) A pn(y), forall x,yeM ;

Va(X+Y) v, (X)v,(y), forall x,yeM ;
3. up(rx)= p,(x), forall xeM and reR;

vo(rX)<v,(x), forall xeM and reR.
We denote the set of all IFM of M by IF(M).If A B aretwo IFM's of M such
that Ac B,thenwesay A isan IF submodule of B and denote by ASIF B.

Definition 8: Let M be an R -module, NcM and «<[0,1]. Define the IFS
ay=(u ,v ) of M asfollows
N ON

o xeN l-a xeN
u ()= and v (x)=
aN . aN .
0 otherwise 1 otherwise
forall xeM .
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If =1, then u =X, and v :ZL , Where X, denotes the characteristic
(lN a

N
function of N . In this case we write «, =;(:5 =(x, x;)- Wedenote ;(:f by 1'NF and
;(('; by & also.

Let A= (yA,vA) be an IFS of M . Define

,u; ={xeM |,uA(X) >0} and v; ={xeM |vA(X) <1}.

Also H,, ={xeM |,uA(X) = ,uA(O)} and Vir ={xeM |VA(X) =v, (1)}.

In general for every te M define level subsets

(,uA)t ={xeM |yA(x)2t} and (vA)t ={xeM |vA(x)31—t}.

If A=(,uA,vA)g B=(,uB,vB) are two IFS's of an R-module M , then obviously

y “and v° -
M, S U, V.SV,

— *_ * * o * * t_

Let A=u v . A =p, 0V, andso A =p, v and A —(uA)tm(vA)t.
We have the following proposition.

Proposition 9:

LIf Aisan IFM of M then x/ =A'cv , u =A an A'=v .

2.1f A isan IFM of M then ., :Agv*A,and also A.=M ifandonly if

— . IF

A—ZM .
. A.=0 ifandonly if A:;(;F.
If A< M , then ZLF*QA and AAc A cCA".
If ZL: =A,then M = A",
: ;(L/FI = A ifandonlyif M = A..
If AcB aretwo IFS'sof M, then A"cB”, A cB. and A’ cB".
I A:;(;F,then A=6.
A:;(;F S A =0.

» Proof. All are easy and follow from definitions.

© ©o N o U A~ W

Definition 10: Let M,N be two R-modulesand f:M — N an R-homomorphism.

Let A:(,UA!VA)S”: M and B:('UB’VB)SIF N . Then f(A):(qu(A),Vf(A)) and
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f1(B)=(u v ) are IFM’s of N and M respectively, such that for all

1) 1B
yeN
vie, ()] y=1(x)} y € Im(f)
(1, JY) =
0 y ¢ Im(f)
and
A, (0 y =109} y e Im(f)
v  UY)=

f(A)
1 y¢Im(f)
and for every xeM
(u

£71(B) )00 = Hy (f(x)) and (v ®) )(X) = Ve (f(x)).

g1

Proposition 11: Let M be an R-module and N <=M . Then N <M if and only if
IF
x < M.

N IF
* Proof. Suppose that N is a submodule of M . Then 8N and hence
x,, (@) =1 and ;(‘;(9):0.
Now let x,yeM . If x,yeN, then x+yeN, so 1:;(N(x+y)2;(N(x)A;(N(y)
and 0= 7% (x+y) <25 (v 2a (¥).
If xeN, then » (x+y)2x (nx (¥)=0and 2" (x+y)<y ()vx (¥)=1.

Similar to this case we get if y¢ N.
Now let xeM and reR . If xeN , then rxeN and so we have

1=, (rx) =N (x) and 0:7(; (X) s;gL (rx).

If xg N, then 0=y (X)<y (rx) andalso 12;52 (x)z;fN (rx).

Therefore ;('NF isan IFM of M.

For converse suppose that ;('NF isan IFM of M. So 2, (6)=1 and hence #eN.
Now let x,yeN and reR,then Z, (rx+ y)ZQ(N (rx)/\;(N (y)Z;(N (x)/\;(N (y)=1.
So rx+yeN.Thatis N isasubmoduleof M.

Example 12: Let M=Z over Z and N=2Z , K=3Z . Then ZLF and ;(:(F
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are IFM 'sof M .

Example 13: Let M =, R.Then Q<M but Z M.So Z(‘;SIF M and y* M, by

4

proposition 2.14.
DISCUSSION AND RESULTS
Center of Intersection graph of IF submodules of a module

In this section we use notations GR, VX and EG for graph, vertex and edge
respectively.

A GR G consists of aset V(G) of vertices or points and a collection E(G) of
pairs of vertices called edges. If a and b are two vertices of a GR and if pair (a.b) §
an EG denoted by e, we say that e is an EG between a and b or a and b are near.
In our discussion, all GRs are simple. The GR H =(W,F) is a subGR of the GR
G=(,E) if W isasubsetof V and F isasubsetof E.If H=(W,F) isasubGR
of the GR G =(V,E) such that an EG exists in F between two vertices in W if and

only if an EG exists in E between those two vertices, the sSubGR H is said to be caused
by the set W , which is maximal subGR of G with respect to the set. A laneina GR is an
alternating sequence of vertices and EG a,xa,...x,a, in which each EG x; is a,_,a,.

The distance of a lane is n, the number of occurrences of EG in it. A route is a lane in
which all vertices are different. For vertices x and y of G, we define d(x,y) to be the

distance of any shortest route from x to y. G issaid to be connected, if there exists a
route between every pair of vertices of it, otherwise it is said to be disconnected.

Now we are going to remember the definition of intersection GR on algebraic
structures. The intersection GR of ideals of a ring is a GR with VX set as the collection of
nontrivial ideals of the rings such that any two vertices are near if their intersection is not

zero. The intersection GR G,, of submodules of M is a GR with VX set V(G,,) is the
collection of all submodules of M and any two different A,BeV(G,,) are near if and
only if AnB=0. The notation G,, —0 stands for the caused subGR of G,, which
does not contain the VX 0. In the same sense, the intersection GR G of F(M) isaGR
with V(G) = F(M) and for two different F submodules «, e F(M), «,f arenear if
andonlyif anf# y, andwewrite « adj g.If « and S arenotnear, we write «

nadj £.
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The intersection GR of IF submodules of a module M (denoted by G or G -
1

M

or G - ) is a GR such that its vertices set is IF(M) and two vertices A and B are
M

near if and only if AnB = y, , while G-y, denote the SUbGR of G without the VX

Zo - We refer to [1, 2, 4, 5, 7, 10, 12, 17] for some recently researches about some
algebraic GRs and F GRs.

Definition 1: A VX of a GRG is called center if it is near with every VX of G.

Theorem 2: Let N be amodule and N <M . Then N isacenterin G, -8 ifand

only if ;(:: is a center in G—;(;F.

* Proof. Suppose that N is a center in GM -0.If A:(ﬂA,vA)S IFM and
A+ ;(;F, then A"<M and A" =0. Then NNA" =8 . We will prove ;('NF NA# Z;F.
Assume =xeNNA’.So ;(N(x):l and ,uA(X)>0 or vA(x)<1.We can conclude

from recent statement that ;(N(X)/\,UA(X)>O or ;gL (x)va(x)<1, implies

IF
N

Z'NF NA# ;('HF .Hence »'7 isacenterin G—;((';.

Conversely, let ;(LF be a center in G,, —Z;F. We will show that N is a center in
G,, — 0. For this let 8= K <M . By assumption, ;(LF m;(:: ;t;(; and hence

there exists 8= xe M such that Z, (x) X (x) # Z, (x),

or
there exists &=y eM such that ZL (y)v;(‘:< (y) = Z; (y).

Case 1: There exists € #xeM such that Z, (X)/\;(K(X)izg (X). Then X, (x)>0
and hence X, (x) =1. Similarly 2, (x)=1,andso 8=xeNnK;ie, NnK=6.
case 2: There exists @+ xeM such that ;(L (x)\/;(‘; (x);t;(;(x):l. So ;(L (x) <1
and hence ;(L (xX)=0, implies xe N .

Similarly xe K.

Therefore 8 xe N NK . So in both cases we conclude N is a center in GM -0.

Corollary 3: If N and K are two submodules of M suchthat N c K,then N isa
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centerin G, —6 ifandonlyif [ isa centerin G, — 0.

IF
nZ

Example 4: nZ is a center in Gz—e,for any n=1,2,... s0 y'* iscenterin G—;(;F,

where G isthe intersection GR of IF submodules of Z.

Example 5: It is clear that neither 3Z12 nor 4Z12 is center in GZ — 6, so neither
12

IF

3z

IF i H IF IF : . IF
V4 nor y,. 1S center in G—;(e . But ;(2212 IS a center in G—;(e .

12 12

Lemma6: If A and B aretwo IF ideal of R, then ABc AnB.

* Proof. We should prove ,uAB(X)S,uAmB (x) and vAB(X)ZvAmB (x), forall xeR
It x=yz . then s, (0=p, (D=p,(2)Ap (y2)2u,()Au(2) , 5o
o 2, () At (D)X= 2=, (9).
Similarly vAmB(x)SvA(y)va(z); for all y,zeR with x=yz . Hence
VAmB(X)S/\{VA(y)\/VB(Z)l X=yz }:VAB (X). Thus AB<ANB.

W
A ring R is called prime if @ is a prime ideal of R. An IF ideal A of R is

called prime if whenever 1J c A for some IF ideals I,J of R, then 1< A or
JcCA.

IF

Lemma 7: If R isa prime ring, then Z,

is an IF prime ideals of R.

 Proof. Suppose that A B aretwo IF ideal of R suchthat ABc ;(;F.We must
prove Ac ;('HF or Bg;(;:.
First we show that For this let x= Y.z, e A°’B° where Y, eA’ and Z, eB’". So
y,em, Oy ev, and z €u Or z ev . Since M, Vv, and M, SV, W
conclude that y ev and z ev : So

0 A 0 B

1> vA(yo)va(zO)zA{vA(y)va(z) | x=yz}=vAB(x) . This implies x=6 ; as
AB:Z;F. Now since R is prime, so A°=6 or B’ =6. Finally by proposition 2.11
we get A:;(;F or B:;(;F.
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Theorem 8: If M =R is prime, then every VX of G —;(;F is center.

* Proof. If possibly suppose that A is not a center in G —;(;F. Then there exists a
VX B in G—;(;F with B nadj A. Then ABgZ{';, as AB c AnB by Lemma 3.5.
Since R isa prime ring so ;(;F isaprime IF idealof R by Lemma3.6.S0 A= ;(;F

or B= ;('; a contradiction.

Example 9: It is well known that Z is a prime ring. So every VX in the intersection GR
of nonzero IF submodules of Z isa center.

Lemma 10: Let A, B betwo IFM ’s of the module M . Then
1. (A+B)' =A"+B".
2. (A+B)y =A+B".
3. (AnB)'=A"NB".
4. (AnB) = A'NB".

+ Proof. (1) Let xe(A+B) = ,u:A+B) , then
0<u,_ ()= \Au, (Nau (@)]y+z=xy,2eM}
So there exist y,,z, €M such that x=y,+z, and yA(yO)/\yB(zo)>0, implies
# (¥)>0 and u (z)>0 and so vy, elu; =A,z, e,u; =B" . Hence
X=Y,+2, €A +B". Therefore (A+B) < A" +B".
In the other hand let xe A"+B". Then there exist y,e A" and z,eB" such that
X=Y,+2,. Now
m, )= Nau @)y+z=xy,2eMy2nu (Yo)Au (2,)>0
Hence x e 'u:A+B) =(A+B)". Therefore A"+B"c (A+B)".
(2) Let xe(A+B)° :v‘;% , then 1>VA+B(X) = /\{vA(x)va(y)| y+z=x;y,2e M}.

Therefore there exist XY, € M such that x= y, +Z . VA(XO) <1 and vB(yo) <1
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and so X eA",yO e B°. For converse suppose that x = y,+z € A" +B°, such that
Y, e A =V and z, eB’ =V Then vA(y0)<1 and VB(ZO)<1 and so
1> vA(yO)va(zo) > /\{vA(y)va(z)|x =y+z;¥,2ze M}= VA+B(X) . This implies
(3),(4) are clear.

Lemma 11: Let A,BsIF M . Then
1. 1If AmB:Z;F,then A B =0.
2. AmB:;('; if and only if A°~B° =0.

* Proof. Use proposition 2.11 and Lemma 3.9.

Theorem 12: Let A be a nonzero IF submodule of the module M. Then A is a

center in G—;(;F ifand only if A" isacenterin G -0.

» Proof. Suppose that A is a center in G—;(;F and =N <M . Then ;(LF ¢;(;F
and so Am;(:f # ;('HF . We will show that A° "N = @ . Consider two cases:
Case 1: There exists 8 # xe M such that yA(x) NI (x)>0.Then xe ,u; c A" and (
;(N(X)=1) XxeN.So xe A°nN.
Case 2: There exists 6#xeM such that v (X)v z (x) <1. Then x ev; < A" and (
;(L (xX)=0) xeN.So xe AnN;ie A" isacenterin G, -0.
Conversely assume A" is a center in G, -0 and ;(;F #B< _M. Then B°#0 and

hence A°’B°#6. Now by Lemma 3.10 and proposition 2.11, AmB;t;(;F, as

required.
w

Theorem 13: Let Ac B, be two IF submodules of M. A is a center in G, —;5': if

and only if A° is a center in GB° -0.

+ Proof. Suppose that A is a center in Gg— ;(;F. Then A’ is a non-zero

submodule of M and also A° = B°.
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Let N beaVXin GBO—H. Define an IF submodule C=(yc,vc) of B by

Uz (X) xeN vg(x) xeN
u(X)=9 0 xe&N and  v.(x)=< 1 x¢N
then C°=N.

Now for xe N we have, or Ve (x) <1, by definition of C and N < B°.
Since N =6, so there exists 0#xe N so that M (x)>0 or V. (x)<1 and this
implies that C ;t;(;F. Then ANC iZ;F and so for some non-zero yeM we have

,uA(y)>O or vA(y)<1 and also ﬂc(y)>0 or vc(y)<1. Hence 02ye A°"NnC’° as

desired.

Conversely assume that A" is a center in G -6 and CeGB—;(":. Then
o

CeG -¢ and hence CCnA #60. Let 9=xeC NnA’. So ,uc(x)>0 or v, <1

B

and yA(x)>0 or vA(x)<1. It is not difficult to see that H (x)/\,uA(x)>O or

v () vv (x)<1,thatimplies CnA= Z;F as required.

Lemma 14: Let H¢K1£M1£M and ¢9¢K2£M2£M i K1 iS a center in

G -6 and K2 isacenterin G

—60,then K nK isacenterin G -0.
M1 1 2

M2 MlmM2

* Proof. By hypothesis, KlmK'l;tH for every 6= K'lSMl and szK'2 #0
for every ¢9¢K'23M2 . Let 9=N<M nM_, then NAK #0 . Since
NmK1§M2,so (NmKl)sz;tH,asrequired.
w

Lemma 15: Let f:M — N be a module homomorphism. If & = Nl <N isacenterin

G, —0 then ffl(Nl) isacenterin G —0.

* Proof.
Case 1. If 02M <M . If f(M)=0 then Mlgkerfgf‘l(Nl), S0

-1 —
M ATEHN)=M. .
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Case 2. If f(Ml);«tH then Nlm f(Ml);t@ . This means that there exists
O+ye A\ f(Ml). Hence there exists 6 # x e M, such that 8=y = f(x) and also
f(x)eN_.Then xe f‘l(Nl)li , as required.

Theorem 16:
1 Let A B<_M. Then Ais a center in G- if and only if A and B are

0
centersin G_ - Z;F and G- ;(':, respectively.

2. Let B,B < M. If A and A are centers in GB—Z;F and G -y",
B

respectively, then AN A s a center in G, . — 7"

NB 4

3. Let f:M—N beamodule homomorphism. If A s centerin G _ —;(;F , then
IN

IF
0 "

f *(A) iscenterin G X
1

M

 Proof. 1. First, we assume that A is a center in G — ;(;F. Consider a VX C of

G, —Z'HF ,then Cisalsoa VX of G —;(;F . By assumption ANC = ;('; ,i.e. Aisa center
in G_ —;(;F. Again, if we consider a VX D of G—;(;F, then A adj D. Thus B is also a
centerin G —;(;F.

Conversely, suppose that A and B are centers in G_ — ;(;F and G- Z;F, respectively.
Now, for a VX E of G—;(;F, we have B adj E, as B is a center in G—;(;F. Then,
0=AN(BNE)c ANE, since Alsacenterin G_ —Z;F. From this, it is observed that

e(A)=1lin G —;(;F. Thus, Ais a center in G —;(;F.

IF

2. Assume that A and A are centers in G -,

and G - z;F, respectively. By
B

Theorem 3.12, we have A’ and are centersin G -6 and G -6 respectively. Also
B° B°

using Lemma 3.13, A" A" is a center in G —@. Again by Theorem 3.12, it

B°NB °
follows that AnNA isacenterin G —;(;F , that completes the proof.

BNB

3. It can be easily verified that f*(A")=(f *(A))". Suppose that A is a center in
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G - —;(;F . It follows from Theorem 3.11 that A’ is a center in GN —6. By Lemma
IN
3.14, f'(A°) isacenterin GM — 6. Thus again by Theorem 3.11 we get f '(A) isa

centerin G - —@ . Hence 3 hold.
Im

Lemma 17: Let Ml,MZSM such that MlmMZ:G. If Klle and
T M1 ® M , ™ M1 is the projection map, then 7zl‘1(Kl) = Kl @ Mz.

* Proof. It is clear.

Theorem 18: Let Ai gBi be IF submodules of a modules M, for i=1,2,...n. If

{AY} . is a disconnected set of vertices of G, and Ai isacenter in GB —;("; for each
1 1= i
ie{l,2,...,n}, then {B_}f_‘_1 is also a disconnected set and A+A +.+A is a center

; IF
in G -7 .
Bl+BZ+"'+Bn [

e Proof. First we show that the theorem is true for n=2. We consider a
disconnected set {Al,Az} of vertices of G such that Al and A2 are centers in

G, —;('; and G_ —Z;F, respectively. By using Theorem 3.12, A" and A’ are
1 2

centersin G -6 and G -4, respectively. By Lemma 3.13, we have Al‘“ mA; isa
B B,
centerin G —0.Byhypothesis, A NA = ;(;F which concludes that A’ A’ =6
BBy
by Lemma 3.10. Thus B‘l’mB; =¢ and from this we see that {Bl,Bz} is also a
disconnected set of vertices.
Now take the projection maps 7 : B; @ B; — B; and 7: B; @ B; - B;. By the Lemma
3.14 and Lemma 3.16, it can be seen that n‘l(A;) = Al‘“ + B; and n‘l(A;) = A; + B; are
centers in G —6 . We have A; nadj B; and A; nadj Bl". It is not difficult to see
B +B,

that A +A isacenterin G —0 . Hence by Lemma 3.9 (2), (Al + A2)° IS a center

B +B;

in G -6.S0 Al + A2 is a center in B1 + B2 , by Theorem 3.12. Next assume that
(B;+B5)°

the theorem is true for n—1, then {Bl, B2 BH} is a disconnected set of vertices and
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A +A +.+A isacenterin G —Z;F. Now by the above case it is clear

By +By+.+B,-1
that (B,+B,+..+B,-1) nadj B, and (A+A +..+A -1)+A, Iis a center in

IF nooi ;
(B8, e s5, 1155, x, - Hence {Bi}izl is also a disconnected set and A + A, +...+ A,

isacenterin G —x"™, as required.
Bl+BZ+...+Bn [

Lemma 19: Let M be an R-module and A,B,C <. M such that AmB:;('; and
(A+B)nC =;('9F,then An(B+C) =Z;F.

* Proof. Straightforward.

Theorem 20: Forany AeV(G), thereisanon-near VX C to A suchthat A+C isa
center in G—;(;F.

* Proof. We consider that A is a non-zero IF submodule of M . Let
Q={B<_M |AﬂB:;(;F}. Clearly, Q=@ . By Zorn's lemma Q has a maximal

element C, with respect to ANC :Z;F' Thus we obtain a non-near VX C to A.
Now, we show that A+C is a center in G—;(;F. Suppose A+C is not a center in

G—;(;F. This means e(A+C)>1. Then there is a non-zero D&V (G) such that

(A+C) nadj D, and this gives A nadj (C+ D). But, maximality of C with respect
to ANC =;(;F implies that A+C =C. Therefore, we get D=Dn(A+C) =;5'9F by
Lemma 3.18, which is absurd. Hence the theorem is obtained.

W
Corollary 21: Let Ac B be two IF submodules of M . Then for any AeV(GB),

there is anon-near VX C to A suchthat A+C isa center in G —;((';.

Definition 22: Suppose that G is the intersection GR of IF submodules of a module M
.Let AeV(G).ThenaVX BeV(G) issaidtobea complement of A if A nadj B

and A+B:1'; . G is said to be a complemened GR if every VX of G has a
complement.
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Theorem 23: If G isacomplemented GR, thenso is GA forany IF submodule A of
M.

* Proof. Let BeV(GA). Then B N A is a complement of B in GA, where B

isacomplementof B in G.

Definition 24: An IF submodule A of M is called maximal if A is a maximal
element in the set of all non-constant IF submodules of M, with respect to the set
inclusion.

Lemma 25: (Modularity Low): Let M be a module and A= (yA,vA), B= (,uB,vB)

and C = (u.,v.) be IFM s of M. Then ANn(B+C) =2 (AnB)+(ANC). Moreover
if Bc A, then An(B+C)=B+(ANC).

* Proof. The first statement is clear.
To see the second statement, suppose that B < A. Then for every xe M we have

()OO =\ A, (DA, @) Ap @) y+2= X (x-y =2)}

B+(ANC)

2\, (A, )Ap (Y)Au (2)] y+z2=x} =(since BC A)

A, W au, (A u @] y+2=530= 1, (A G A, (D Au @) y+z=x) =
(u, . )

A~(B+C)

Also
W, 0= A )V, @vy @) y+z=x5(x-y=2)}

B+(ANC)

s/\{vB(y)v(vA(x)va(y))vvC(z)| y+z=x} =(since Bc A)

AV, VY, vy @) y+z=xb=v, (v (A, (v ()] y+z=x4) =
v, )

AN(B+C)
So we conclude that An(B+C) <= B+(ANC).
Finally An(B+C)=B+(ANC) in this case.
Lemma 26: Let M be an R-moduleand A, B two IF submodules of M .

1. For vte(0,1] A cB ifand only if AcB.
2. For vte(0,1] At = Bt if and only if A=B.
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* Proof. Straightforward.
Let te(0,1] and x e X, define the IF F point xt'F =(p v ) such that

1-t y=x

t =X
y and vt(y): 1 y#X , forevery ye X.

ﬂt(Y):{o v

If A isan IF subsetof X, then the notation xt'F e A means XGAt.

Theorem 3.27 Let A be a VX in G. If GA is a complemented GR, then there is a

non-trivial maximal IF submodule of A which is not a center G, —;(;F.

+ Proof. It is not sufficient to show that for t € (0,1] and for each XtIF # ;(('; e A, we
have a maximal IF submodule C of A such that xt'F e C. We consider xt'F e A. Let
Q={B|Be IF(A),xt'F ¢ B}. It is clear that ;(;F eQ, hence Q=T . So by Zomn’s

lemma Q has a maximal element say. We show that C is a maximal IF submodule
of A. Let Ct cDh cA. Since D cA . so Dc A. As G(A) is complemented,

therefore there exists D eIF(A) with A=D+D and D nadj D . Now
DA(C+D)=C+(DND)=C+ " =C.

Thus xt'F ¢ C implies either x:F gD or xt'F g(C+D). If xt'F gD, then D=C, as
C is maximal with xt'F ¢C.So D =C . Also if xt'F ¢(C+D), then C+D =C.
This gives Ct+D't :Ct. Therefore A=D+D gives Thus C is maximal with
xt'F ¢ C. From this, we get that there exists a maximal F -submodule C of A with
xt'F gC if xt'F(;t ;(;F)EA. We observe that ((KA|A is a maximal submodule of

A} = ;(('; , as desired.

Definition 28: An IF -submodules B:;(;F of M is said to be simple if AcB,
where AelF(M) implies either A= ' or A=B.

[

Theorem 29: Let M be a module. If 1'; is the sum of simple IF submodules of M,

then 1'; is the only center in G —;(;F.
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* Proof. If possible, we assume that A is a center in G —{Z;F} which is different
from 1'; . But 1'; is the sum of simple IF submodules of 1'; . Let {A} be the
collection of all simple IF submodules of 1'; . Then 1": = ZAi :

Since A iscenter,therefore ANA" =0 forevery i.Asforevery i, A isasimple IF
submodules of M, thus An Ai < Ai gives An Ai = Ai. That means A contains all
simple IF -submodules of M . From this 1'; <A, implies A=1'; .

W

Theorem 30: If 1'; is the only center in G—;(;F, then the intersection of maximal

paper F -submodules of 1'; is ;(;F.

* Proof. Let Asl'; . Then by Corollary 3.20 there is a non-near VX B with

A+B isacenterin G.From the given condition A+B :1',: . This means that B is a

complement of A. Thus G is a complement GR. Now, following the same way of
Theorem 3.26, we get the result.
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