
Lebanese Science Journal, Vol. 22, No. 1, 2021                                                                                      P a g e  | 22 

 

  http://dx.doi.org/10.22453/LSJ-022.1.022-037 

National Council for Scientific Research – Lebanon 2018©  

lsj.cnrs.edu.lb/vol-22-no-1-2021/ 
 

DESIGN OF THE GROUNDWATER LEVEL MONITORING 

NETWORK USING PRINCIPAL COMPONENT ANALYSIS 

(PCA) TECHNIQUE 
 

Atefeh sayadi shahraki1, Saeed Broomandnasab1, Abd Ali Naseri1 and Amir 

Soltani Mohammadi1 
1Irrigation and Drainage Department, Faculty of Water and  

    Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran 

Sayadi.Atefeh@gmail.com 

 

(Received June 2019 – Accepted April 2021) 

 

ABSTRACT 

 

Shahraki, A. Broomandnasab, S. Naseri, A. & Mohammedi, A. (2021). Design of 

the groundwater level monitoring network using principal component analysis 

(PCA) technique. Lebanese Science Journal, 22(1), 22- 37. 

 

Using an appropriate monitoring network is considered as an efficient option to 

manage the groundwater resources and reduce drilling of costly sampling wells. 

Principal component analysis (PCA) is one of the data reduction techniques used to 

extract essential components. The used techniques are based on the identification of 

those describing the variance of the system. In this paper, the PCA technique has been 

employed in order to identify the effective wells and remove the less important ones. For 

this purpose, 160 wells were constructed in the Salman Farsi Agro-Industry, located in 

Khuzestan province of Iran. The data are measured twice a month for 12 months. In this 

technique, variation factors called principal components are identified through 

considering the data structures. Using the PCA, the relative importance of each well 

has been calculated for the groundwater depth estimation. In the present study, the 

acceptable threshold has been taken to be 0.8 and therefore the number of wells in 

determining groundwater depth was reduced to 33 ones. Identifying the essential wells, 

the important points for sampling are identified and groundwater depth monitoring is 

performed only in these wells. This will save time and cost of groundwater level 

monitoring within the study area. 
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INTRODUCTION 

 

The importance of water in all parts of human life, including the drinking, 

industry and agriculture, has led to a great deal of focus on the critical areas such as 

water demand management and water quality conservation (Elçi & Ayvaz, 2014). Due 

to the complexities of the underground water environment and considerable costs of 

conventional monitoring methods, the invention of new technologies and use of 

advanced methods will help improve the underground water systems. The design 

approaches of groundwater monitoring network are divided into two main categories of 

land-based and statistical analysis (Helena et al., 2000). The geological methodology is 

based on the quantity as well as quality of the geological and groundwater information 

and advanced statistical methods are not used in (Lucas and Jauzein, 2008). The 

installation and maintenance costs associated with the groundwater level readings in the 

observation wells are proportional to their number in the network (Sheikhy Narany et 

al., 2013). Designing the groundwater monitoring network is the same as determining 

the number of wells and their distribution as well as density in the area. The 

groundwater monitoring goals include the ambient resource condition monitoring, 

compliance monitoring, risk detection monitoring, research monitoring, or a 

combination of these (Gangopadhyay et al., 2001). In general, the monitoring network 

optimization problem is a nonlinear hybrid one and optimization algorithms are 

appropriate for solving it. The purpose of designing the network model is to find an 

optimal sampling map from many cases which are solved using iterative processes and 

thus require complicated computational efforts.  

 

PCA is an optimal mathematical method for reducing the volume of data and 

transforming primary variables into several components (Richards & Jia, 1999; Jolliffe, 

2002). In this method, according to the data structure, the factors causing changes which 

are called the principal or implicit components are identified (Pearson, 1901). In this 

way, after identifying the components that make the most variance changes, the 

variables with the highest correlation coefficient with the main components can be 

extracted. Khan et al. (2008), developed a process for employing PCA in order to 

optimize a groundwater monitoring network in an irrigation area of Australia. Their 

results indicated that the overall difference of groundwater level between the original 

piezometer and optimized networks after the PCA process is less than 20%. At the same 

time, the total number of piezometers in the optimized network is reduced by 63%, 

which will save the time and cost of the groundwater levels monitoring within the 

irrigation area. The real strength of PCA lies in its dimensionality reduction capability 

for multivariate data sets (Richards and Jia, 1999). By reducing the dimensionality, a 

smaller principal component (PC) set may calculate the contributions of individual 

variables rather than the original multivariate data set. It is a common practice to 

aggregate the variance of first few PCs in order to obtain more than 80% of the variance 
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of the original multivariate data. Adil et al. (2011) conducted a study on optimizing the 

groundwater quality monitoring network in the Indian Maheshwaram basin using PCA 

and Kriging analysis. The aim of this study was to evaluate the relationship between 

variables and to minimize the collection of information for monitoring the groundwater 

quality. The Kriging method was also used to estimate the standard error. Results 

indicated that 13 of total 61 wells can be removed from future sampling. Also, Selle et 

al. (2013) examined the spatial and temporal patterns of PC scores in order to improve 

the understanding of processes governing the groundwater quality in the Ammer 

catchment located in southwest Germany. The results indicated the influences of land 

use and geology on the groundwater quality. Sheikhy Narany et al. (2015) used the 

multi-objective based approach for the groundwater quality monitoring network 

optimization in Amol-Babol plain. In this study, the natural contaminant factors (NCF) 

and anthropogenic contaminant factors (ACF) were selected for the optimal design of 

monitoring wells based on the PCA. The results illustrated that the contamination mass 

detection capacity of around 86% can be estimated by sampling 114 wells instead of 

154 ones in the initial existing monitoring wells within the study area, for both the 

natural and anthropogenic contaminations. Sánchez-Martos et al. (2001), Debels et al. 

(2005), Iscen et al. (2008), Wan (2009), Stathis and Myronidis (2009), Gvozdić et al. 

(2012), Nguyan et al. (2013), Hu et al. (2013), Vonberg et al. (2014) and Wang et al. 

(2019) also used the main components technique in their research. The present study 

aims to identify the effective wells in determining the groundwater depth of Salman 

Farsi Sugarcane Agro-Industry using PCA method. 

 

MATERIALS AND METHODS 

 

Case study: Salman Farsi Sugarcane Agro-Industry is located 40 km south of 

Ahvaz city, Khuzestan province, Iran. Its agricultural area is about 12,000 hectares, 

10,000 hectares of which are annually harvested and the remaining 2,000 hectares are 

grown and re-cultivated. Salman Farsi Agro-Industry is limited to the Debal Khazaee 

sugarcane agro-industry from the north, Ahvaz-Abadan road from the east and Karun 

River from the west. The research area has a dry climate with scorching summers and 

mild winters. The coldest and warmest months of the year are January (with the lowest 

temperature of 7.5 °C) and July (with the highest temperature of 47 ° C) respectively. 

Moreover, the average precipitation of the study area is 266 mm and the annual 

evaporation is reported as 2788 mm. The only irrigation source of the farms is the large 

Karun River. Physiologically, the study area is flat and relatively of low altitude. The 

general slope of the land is from the northern highlands to the shores of the Persian Gulf 

in the south, so that it is shallow in the south of Ahvaz to Abadan (about 1/10 m per 

kilometer). In addition, the altitude of this agro-industry is about 2-4 m above the sea 

level. The soil texture is dense in the area, mostly composed of clay and silt. The 

position of the Salman Farsi Sugarcane Agro-Industry is shown in Figure 1. 
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Figure 1. Location of Salman Farsi Agro Industry unit in Southwest Iran. 

 

 

Principal Components Analysis (PCA):  PCA is a multivariate statistical 

method used for data reduction as well as deciphering patterns within the large data sets 

(Hull, 1984; Joliffe, 1986; Wold et al., 1987; Stetzenbach et al., 1999). The purpose of 

this analysis is to transform the data table into a new orthogonal and uncorrelated set of 

factors (PC) and to extract important information from them. This new representation 

compresses the data by keeping only the most important information, simplifying the 

explanation and exploring the structure as well as composition of the data (Abdi & 

Williams, 2010). It is assumed that 𝑋 is an 𝑛 ∗ 𝑝 matrix, where n is the number of 

observations for 𝑝. In the proposed scheme, 𝑛 is the number of statistical periods in 

which the groundwater level is measured and 𝑝 denotes the number of wells or stations. 

Using the correlation of water level in the 𝑝-well adjacent, the relative importance of 

each well will be determined in the display of groundwater depth changes using PCA. 

In this analysis, the PCs are defined as the following linear functions (Sauquet, 2000): 

 

(1 ) 

𝑍1 = 𝑋𝑎1 = 𝑎1,1𝑋1 + 𝑎2,1𝑋2 + ⋯ + 𝑎𝑝,1𝑋𝑝 

𝑍2 = 𝑋𝑎2 = 𝑎1,2𝑋1 + 𝑎2,2𝑋2 + ⋯ + 𝑎𝑝,2𝑋𝑝 

. 

. 

. 

𝑍𝑝 = 𝑋𝑎𝑝 = 𝑎1,𝑝𝑋1 + 𝑎2,𝑝𝑋2 + ⋯ + 𝑎𝑝,𝑝𝑋𝑝 
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where 𝑎𝑖,𝑗 is the 𝑖th element of the 𝑗th principal component and 𝑎𝑗 stands for the 

conversion coefficient of the principal variable (𝑋) to the 𝑗th main component (𝑍𝑗).  

 

Using properties of the matrices, it can be proved that the coefficients of the 

principal components (𝑎𝑗) are special vectors related to the covariance matrix S. The 

value and special vector of matrix 𝑆 are calculated from the following equations: 
 

(2 ) ⌈𝑆 − 𝜕𝐼⌉ = 0 

 

In the above relation, if p is the number of wells, then I is an identity matrix of P * I and 

S is the covariance of order P which can be calculated from the following equation: 

 

(3 ) 
𝑆 =

𝑋𝑇𝑋

𝑛 − 1
 

 

In the above equation, T stands for the transpose of the matrix. The following 

constraints are given while solving equation 2: 
 

The eigenvectors must be orthogonal)𝑎𝑗
𝑇𝑎𝑖 = 𝑎𝑖

𝑇𝑎𝑗 = 0, 𝑖 ≠ 𝑗) 

The eigenvectors must be orthonormal or unit (𝑎𝑗
𝑇𝑎𝑗 = 1) 

 

The above constraints make the answers to equation 2 unique and therefore the 

main components of 𝑍𝑗 are independent. If 𝑎1,𝑎2,…,𝑎𝑝 are the eigenvectors 

corresponding to the eigenvalues 𝜕1, 𝜕2, … , 𝜕𝑝 (as for 𝑖 < 𝑗 ،𝜕𝑖 > 𝜕𝑗) respectively, then 

equation 1 is rewritten as follows: 
 

(4 ) 𝑍 = 𝑋𝐴 

 

where  𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑝) and 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑝).  

 

The variances of the main components, 𝑍𝑗, are the eigenvalues corresponding to 

them. Therefore, the variance of the first component (𝑍1) is equal to 𝜕1. So, the first 

main component has the highest variance, indicating the high capability of the first main 

component in identifying the groundwater level changes. The first major component is a 

line whose extension corresponds to the most visible scattering in the original data. 

Also, the second main component (𝑍𝑗) has a variance of 𝜕2, which is in the second place 

in terms of the variance, and its extension is in the direction that the visible scatter of 

data is in the second place. The rest of the main components are described in the same 

way. The main components pass through the center of the main data and are 

perpendicular to each other. 
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In order to calculate the relative importance of each well, the correlation 

coefficient between the main components and observed data is used. The correlation 

coefficient between well 𝐼 (𝑋𝑖) and 𝑗th component (𝑍𝑗) can be calculated from the 

following equation: 

 
(5 ) 

𝐶𝑜𝑟 (𝑍𝑗 , 𝑋𝑖) = 𝜕
𝑖,𝑗

1
2⁄

𝑎𝑖,𝑗 

 

The higher the correlation coefficient, the greater the relative importance of the 

well (Sauquet, 2000). 

 

Research method: In summary, the steps for determining the relative 

importance of observation wells in Salman Farsi Sugarcane Agro-Industry include the 

following steps: 

1. Selection of wells for the PCA: In this 

research, 160 observation wells were constructed in the study area and groundwater 

depth information was collected twice a month during the first 12 months of 2018 in 

order to identify the significant wells in determining the groundwater depth. Wells have 

been constructed in 100-m apart strips on both sides of the land border (inside and 

outside). The wells were 3 m deep with a radius of 4 in. Figure 2 shows the position of 

observation wells in the area. In the PCA, the number of variables (wells) must be 

smaller or equal to the observed data (number of sampling periods) (Patterson, 2001). 

Since the number of statistical periods for measuring the groundwater level is 24, the 

corresponding information of 24 adjacent wells has been used for monitoring each of 

them in the current study. For example, for monitoring well No. 105, the data of 24 

adjacent wells, i.e. 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 107, 108, 

109, 110, 111, 112, 113, 114 and 115, 116, 117 have been used. Therefore, the data 

matrix X, will be a 24*24 one for analyzing the main components of well No. 105. At 

this point, a matrix X will be constructed for each well. Also, the data of a well is not 

used while constructing the corresponding matrix X but only those of the 24 adjacent 

ones are used. 

2. Calculation of the correlation coefficient: 

The PCA is performed for each of the matrices defined in step 1 and the correlation 

coefficient is calculated using equation (3).  

3. Selection of the effective wells in each 

PCA: In this research, if the correlation coefficient of a PCA is higher than 0.9 that well 

is selected as the main or effective well in the monitoring process. 

4. Calculation of the relative importance of 

each well: In steps 2 and 3, PCA is performed for each available well and efficiency is 

determined in each analysis. The high frequency of well-known wells indicates their 
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high relative importance. While monitoring the groundwater level, the relative 

importance of each well is defined by the ratio of the number of times that the well has 

been identified as an effective one in the PCA to that it is involved in this analysis. This 

ratio shows the importance of each well over other ones. Therefore, in order to save 

time and cost, it would be possible to eliminate low-level wells while monitoring the 

groundwater levels. 

 

 
Figure 2. Location of observation wells. 

 

5. Analysis of the method used: Removing any well may remove part of the 

groundwater table information. In order to investigate the uncertainty in selecting the 

number of wells, the average coefficient of variation of the groundwater level is used. 

For this purpose, due to the accuracy (or relative importance) of the wells identified and 

using their corresponding data, the coefficient of groundwater depth changes for each of 

the years is calculated and it's average is achieved as well. Therefore, as long as the 

average coefficient of variation does not significantly change, the inefficient wells can 
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be discarded. Using this method alone will be acceptable if it is assumed that the 

coefficient of variation increases upon removing the inefficient wells. In this way, the 

threshold on which the least difference in the coefficient of variation occurs is selected. 

However, it is important to note that the removal of inefficient wells does not always 

increase the coefficient of variation and this value increases or decreases depending on 

the nature of the information removed from the wells. If a well with greater water depth 

is removed on a certain threshold, the obtained coefficient of variation will be smaller 

than that associated with all wells. Hence, in order to choose an acceptable threshold 

level in the present study, in addition to calculating the coefficient of variation, the 

average amount of uncertainty or monitoring error was calculated using the average 

water level of the wells (equation 5). Using equations (6) and (7), the coefficient of 

variation and monitoring error in the case of the removal of inert wells on a certain 

threshold were obtained from the through comparing the average wells of that threshold 

with the mean of all wells as: 

 
(6 ) 𝐶𝑉 =

𝜎

𝜇
 

(7 ) 
𝐸𝑟𝑟𝑜𝑟 =

(𝑚𝑛 − 𝑚𝑜)

𝑚𝑜
∗ 100 

where σ and μ stand for the standard deviation and mean respectively. Also, 𝑚𝑛 

is the average water level after the removal of ineffective wells on a specified threshold 

and 𝑚𝑜 stands for the average water level of all wells. 
 

RESULTS AND DISCUSSION 

 

Calculate the correlation coefficient and Selection of the effective wells in 

each PCA: Optimal design of a monitoring network is a controversial issue due to 

difficulties in the selection of spatial and temporal variations, variables to be monitored 

and sampling objectives (Mogheir et al., 2005; Masoumi & Kerachian, 2010). Although 

several techniques have been developed, such as the geostatistical technique, entropy 

theory, optimization algorithms, statistical methods and hydrogeological evaluation, but 

no particular one is applicable to all situations. Therefore, the process of monitoring 

well selection should be representative of the entire groundwater system and also cost-

effective (Chadalavada et al., 2011) with a minimum number of sampling wells. In this 

research, the PCA method was used for the groundwater monitoring. For this purpose, 

having 24 statistical periods of groundwater level information, 24 adjacent wells were 

analyzed for each well to determine the effective ones. For example, during the 

monitoring process of the groundwater level of well No. 105, 24 adjacent ones have 

been analyzed. In this process, 24 main components were extracted, the value of each is 

equal to its variance (which is the same as in equation 2). Only a few of these main 

components, which have the highest variances, describe the system changes and can be 
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used to determine the effective wells and the rest with less variances are ignored. In 

other words, since the goal is to calculate the correlation coefficient between the wells 

and main components for determining the effective ones, only the first two components, 

for which the correlation coefficient is significant, are used. Table (1) presents the 

analysis results of monitoring well No. 105. 

 

 

Table 1. Monitoring correlation matrix of well No. 105. 

 
  Principal components   Principal components 

Row Well z1 z2 Row Well z1 z2 

1 93 0.35 0.4 13 106 0.58 0.32 

2 94 0.58 0.39 14 107 0.67 0.39 

3 95 0.45 0.22 15 108 0.95 0.27 

4 96 0.27 0.35 16 109 0.62 0.24 

5 97 0.89 0.09 17 110 0.41 0.45 

6 98 0.31 0.13 18 111 0.74 0.52 

7 99 0.57 0.27 19 112 0.3 0.16 

8 100 0.22 0.26 20 113 0.37 0.29 

9 101 0.36 0.5 21 114 0.25 0.61 

10 

11 

12 

102 

103 

104 

0.9 

0.77 

0.71 

0.11 

0.3 

0.09 

22 

23 

24 

115 

116 

117 

0.21 

0.43 

0.51 

0.24 

0.41 

0.29 

 

According to table 1, the highest correlation coefficient is related to wells No. 

108, 102 and 97, which can be considered as the most effective ones in monitoring the 

groundwater level of well No. 105. The same analysis was carried out for all wells.  

 

Calculation of the relative importance of each well: Finally, the relative 

importance of each well was then determined from the ratio of the number of times 

being effective to that of being involved in the analysis and the obtained results are 

presented in Figure 3. 
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Figure 3. The relative importance of wells based on the PCA. 

 

According to figure 3, there are nine wells as the top-ranked ones (30, 50, 64, 

69, 100, 104, 111, 141, and 156). These wells have been identified as effective ones 

each time they have been included in the analysis. Therefore, they are more critical in 

the groundwater monitoring rather than other wells. This indicates that, they have a 

higher groundwater level compared to the other wells. If the acceptable threshold is 

considered to be 0.9, the number of wells will be reduced to 25. For rating the wells, the 

thresholds are considered to be 0, 0.2, 0.4, 0.6, 0.8 and 1. On the threshold of 1, only 

wells that are ranked 1 (wells that are known as effective in all analyses) remain while 

the threshold of 0 contains all wells (effective and ineffective). 

  

Analysis of the method used: Figures (4) and (5), depict the coefficient of 

variation corresponding to the specified thresholds and the monitoring error. 
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Figure 4. The coefficient of variation in the specified thresholds. 

 

 
Figure 5. The amount of monitoring error in the specified thresholds. 

 

According to figure 4, the average coefficient of variation does not significantly 

change from the threshold of 0 to 0.8 (where the number of effective wells decreases 

from 160 to 33 loops). However, if the threshold exceeds 0.8, the groundwater level 

variation coefficient will increase. Also, as would be observed from the figure, the 

coefficient of variation increases by removing the ineffective wells on each threshold. 

This is mainly due to the fact that the eliminated wells had less water depth than the 

average value. To confirm the results, the monitoring error value was calculated for 

each threshold. According to figure 5, the error rate gradually increases when the 

thresholds fall within the range of 0-0.8. However, on the thresholds of 0.9 and 1, the 
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error magnitude was found to increase with a higher slope. The error value on the 

threshold of 0.8 is equal to 12% (therefore, by eliminating the 127 less important wells, 

the groundwater estimation error will increase by 12% compared to the state in which 

all wells are included). However, these values are estimated as 25 and 34% on the 

thresholds of 0.9 and 1, respectively. In the present study, the threshold value was 

considered to be 0.8 and the number of effective wells in the groundwater level 

monitoring was reduced from 160 to 33 (the effective wells are shown in figure 3). 

Also, no significant error is observed in the surface water table display by reducing the 

number of wells identified. In this way, 127 wells can be removed from the study area 

in the groundwater modeling to save time and cost. Then, performing measurements 

and readings of the critical wells may lead to the increased modeling accuracy (Kumar 

Singh et al. 2009; Subba Rao, 2014; Sheikhy Narany et al. 2015; Zakhem, 2017; Jung et 

al. 2019). 

 

In order to evaluate the results, the design of the groundwater level monitoring 

network was performed using the method employed in the study of Khan et al. (2008). 

The PCA functions, distributed with the MATLAB package, were used to determine the 

relative contributions of individual wells in capturing the spatiotemporal variation of the 

groundwater levels. MATLAB has a built-in PCA multifunctional library, which is 

quite suitable to accomplish PCA of the data set. This MATLAB PCA multifunctional 

library can provide flexible options for data inputs and visualizing outputs in association 

with other softwares. Kriging interpolation algorithm was used to render the data 

surface presentations and determine the spatial differences in wells surfaces using 

different numbers of data sets. In other words, the kriging method estimates the 

groundwater level at existing points and elsewhere. Then, using it, the results of the 

principal component analysis are evaluated and excess monitoring points are 

determined. Due to the fact that in the present study the number of monitoring points is 

sufficient (160 points in the 4.1 hectares), to compare the results, the kriging method 

was used only to evaluate the results of principal component analysis. According to the 

results, the number of wells removed in the present method was equal to 29 and the 

error rate was estimated as 19%. This means that the ratio of the overall difference 

between the groundwater levels corresponding to the original wells and optimized 

networks after the PCA process to the groundwater level of the original wells network is 

less than 20%. It should be noted that out of 29 removed wells, 26 ones are shared 

between this method and the proposed method. By comparing the obtained results, the 

groundwater level monitoring method used in this study, in addition to its ease of doing, 

has a lower error rate than the method of Khan et al. (2008). 
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CONCLUSION 

 

The groundwater monitoring network is an essential step in describing the 

underground water system. The inappropriate distribution of monitoring sites or 

inadequate numbers of information collected on one side and the waste of cost and time 

used to measure additional data on the other side, emphasize the necessity of conducting 

monitoring operations. In this research, effective wells have been identified in 

determining the groundwater depth of Salman Farsi Sugarcane Agro-Industry using the 

principal component analysis method. For this purpose, 160 wells were constructed in 

different parts of the area, and groundwater depth information was measured twice a 

month for a one-year period. Using the principal components analysis, the relative 

importance of each well was calculated for the groundwater depth estimation. 

According to the relative importance of them, one can consider some of them as 

effective in terms of the acceptable thresholds. In the present study, the acceptable 

threshold was taken to be 0.8. Based on this value, the number of effective wells in 

determining the groundwater level depth was reduced to 33. It was found that the 

average coefficient of variation does not significantly change for the thresholds within 

the range of 0-0.8 and the associated error rate increases gradually. However, on the 

thresholds of 0.9 and 1, the error magnitude increases with a higher slope. 
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